Learn More
PURPOSE In order to obtain more insight into heavy ion tumour therapy, some features of the underlying molecular mechanisms controlling the cellular response to high linear energy transfer (LET) radiation are currently analysed. MATERIALS AND METHODS We analysed the decay of the integrated fluorescence intensity of gamma-H2AX (phosphorylated histone H2AX)(More)
The recruitment kinetics of double-strand break (DSB) signaling and repair proteins Mdc1, 53BP1 and Rad52 into radiation-induced foci was studied by live-cell fluorescence microscopy after ion microirradiation. To investigate the influence of damage density and complexity on recruitment kinetics, which cannot be done by UV laser irradiation used in former(More)
High-linear energy transfer (LET) ion irradiation of cell nuclei induces complex and severe DNA lesions, and foci of repair proteins are formed densely along the ion trajectory. To efficiently discriminate the densely distributed/overlapping foci along the ion trajectory, a focus recognition algorithm called FociPicker3D based on a local fraction(More)
To obtain greater insight into the future potential of tumor radiotherapy using proton beams generated from high-intensity lasers, it is important to characterize the ionization quality of the new beams by measuring the relative biological effectiveness (RBE) under conditions where the full dose at one irradiation site will be deposited by a few proton(More)
The application of a microchannel proton irradiation was compared to homogeneous irradiation in a three-dimensional human skin model. The goal is to minimize the risk of normal tissue damage by microchannel irradiation, while preserving local tumor control through a homogeneous irradiation of the tumor that is achieved because of beam widening with(More)
The mobility of damaged chromatin regions in the nucleus may affect the probability of mis-repair. In this work, live-cell observation and distance tracking of GFP-tagged DNA damage response protein MDC1 was used to study the random-walk behaviour of chromatin domains containing radiation-induced DNA double-strand breaks (DSB). Our measurements indicate a(More)
BACKGROUND Laser acceleration of protons and heavy ions may in the future be used in radiation therapy. Laser-driven particle beams are pulsed and ultra high dose rates of >10⁹ Gy s⁻¹ may be achieved. Here we compare the radiobiological effects of pulsed and continuous proton beams. METHODS The ion microbeam SNAKE at the Munich tandem accelerator was used(More)
BACKGROUND AND PURPOSE Laser accelerated radiotherapy is a prospect for cancer treatment with proton and/or carbon ion beams that is currently under fast development. In principal, ultra fast, high-energy laser pulses will lead to a "pulsed" delivery of the induced ion beam with pulse durations of 1ns and below, whereas conventional proton beams deriving(More)
Epigenetic alterations induced by ionizing radiation may contribute to radiation carcinogenesis. To detect relative accumulations or losses of constitutive post-translational histone modifications in chromatin regions surrounding DNA double-strand breaks (DSB), we developed a method based on ion microirradiation and correlation of the signal intensities(More)
Several proteins are known to form foci at DNA sites damaged by ionizing radiation. We study DNA damage response by immunofluorescence microscopy after microirradiation of cells with energetic ions. By using microirradiation, it is possible to irradiate different regions on a single dish at different time-points and to differentiate between cells irradiated(More)