Learn More
Site-directed mutagenesis of the human 5-HT1B receptor was performed to investigate the role of the amino acid residues cysteine 326 and tryptophan 327 in transmembrane region VI and aspartic acid 352 in transmembrane region VII in ligand binding. Binding studies were performed with the antagonist radioligand [3H]GR125743 on mutant and wild-type receptors(More)
We have used a combination of sequence comparisons, computer-based modeling and site-directed mutagenesis to investigate the molecular interactions involved in ligand binding and signal transduction of the human 5-HT1B receptor. Two amino acid residues, S212 in transmembrane region (TM) V and F331 in TM VI, were replaced by alanines. These amino acids are(More)
The antagonist radioligand [3H]GR125743 and the agonist radioligand [3H]5-HT were used to investigate the pharmacological characteristics of the G protein uncoupled agonist low-affinity and G protein coupled agonist high-affinity conformations of the wild-type and mutant human 5-hydroxytryptamine 1B (5-HT1B) receptors. We found that substitution of(More)
Site-directed mutagenesis was used to investigate the molecular interactions involved in ligand binding to the human 5-HT1B receptor. Six mutants were constructed at four positions and expressed in Chinese hamster ovary cells. Substitution of the amino acid F185 in transmembrane region IV by an alanine increased the affinities of sumatriptan, methysergide(More)
The entopeduncular nucleus is one of the major output nuclei of the basal ganglia, with topographically organized projections to both motor and limbic structures. Neurons of the entopeduncular nucleus use GABA as the principal transmitter, and glutamic acid decarboxylase (the GABA synthetic enzyme) is widely distributed throughout the region. Previous(More)
  • 1