Learn More
The availability of a high quality linkage map is essential for the detection and the analysis of quantitative traits. Such a map should cover a significant part of the genome, should be densely populated with markers, and in order to gain the maximum advantage should be transferable to populations or cultivars other than the ones on which it has been(More)
Efficient breeding and selection of high-quality apple cultivars requires knowledge and understanding of the underlying genetics. The availability of genetic linkage maps constructed with molecular markers enables the detection and analysis of major genes and quantitative trait loci contributing to the quality traits of a genotype. A segregating population(More)
Scab caused by the fungal pathogen Venturia inaequalis is the most common disease of cultivated apple (Malus x domestica Borkh.). Monogenic resistance against scab is found in some small-fruited wild Malus species and has been used in apple breeding for scab resistance. Vf resistance of Malus floribunda 821 is the most widely used scab resistance source.(More)
  • E. Silfverberg-Dilworth, C. L. Matasci, +11 authors A. Patocchi
  • 2006
A new set of 148 apple microsatellite markers has been developed and mapped on the apple reference linkage map Fiesta x Discovery. One-hundred and seventeen markers were developed from genomic libraries enriched with the repeats GA, GT, AAG, AAC and ATC; 31 were developed from EST sequences. Markers derived from sequences containing dinucleotide repeats(More)
For all known major apple scab resistance genes except Vr, molecular markers have been published. However, the precise position of some of these genes, in the apple genome, remains to be identified. Knowledge about the relative position of apple scab resistance genes is necessary to preliminarily evaluate the probability of success of their pyramidization.(More)
ABSTRACT Breeding of resistant apple cultivars (Malus x domestica) as a disease management strategy relies on the knowledge and understanding of the underlying genetics. The availability of molecular markers and genetic linkage maps enables the detection and the analysis of major resistance genes as well as of quantitative trait loci (QTL) contributing to(More)
Southern Switzerland has a long tradition of chestnut cultivation as a staple food. Local inhabitants constantly selected varieties according to the ripening period, the type of use, and the adaptability to the territory. As a result, the panorama of chestnut varieties is very complex, as reflected by more than 120 different variety names in an area of(More)
Proof of concept of Bayesian integrated QTL analyses across pedigree-related families from breeding programs of an outbreeding species. Results include QTL confidence intervals, individuals’ genotype probabilities and genomic breeding values. Bayesian QTL linkage mapping approaches offer the flexibility to study multiple full sib families with known(More)
Cisgenesis represents a step toward a new generation of GM crops. The lack of selectable genes (e.g. antibiotic or herbicide resistance) in the final product and the fact that the inserted gene(s) derive from organisms sexually compatible with the target crop should rise less environmental concerns and increase consumer's acceptance. Here we report the(More)
A positional cloning project was started in apple with the aim of isolating the Vf resistance gene of Malus floribunda 821. Vf confers resistance against apple scab, the most important disease in apple orchards. A chromosome walk starting from two molecular markers (M18-CAPS and AM19-SCAR) flanking Vf was performed, using a bacterial artificial chromosome(More)