Learn More
N-methyl-D-aspartate (NMDA) receptor antagonists have therapeutic potential in numerous CNS disorders ranging from acute neurodegeneration (e.g. stroke and trauma), chronic neurodegeneration (e.g. Parkinson's disease, Alzheimer's disease, Huntington's disease, ALS) to symptomatic treatment (e.g. epilepsy, Parkinson's disease, drug dependence, depression,(More)
The present study characterized the in vitro NMDA receptor antagonistic properties of novel amino-alkyl-cyclohexane derivatives and compared these effects with their ability to block excitotoxicity in vitro and MES-induced convulsions in vivo. The 36 amino-alkyl-cyclohexanes tested displaced [3H]-(+)-MK-801 binding to rat cortical membranes with K(i)s(More)
1. The actions of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists, memantine (1-amino-3,5-dimethyladamantane) and (+)-MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5,10-imine maleate, dizocilpine), on recombinant NMDA receptors has been studied by use of the whole-cell patch clamp technique. 2. Human embryonic kidney (HEK)(More)
The authors provide an extensive review of new data related to the role of glutamate in CNS disorders, describing new aspects in glutamate and glutamatergic receptors-NMDA receptors, NR2B-selective antagonists, non-NMDA ionotropic glutamate receptors, N-acetylaspartylglutamate, and glutamate and glycine transporters. New findings in animal models and in(More)
The amino-adamantane derivatives memantine (1-amino-3,5-dimethyladamantane) and amantadine (1-amino-adamantane) are relatively low affinity, uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists which have been used clinically in the treatment of dementia and Parkinson's disease respectively for several years without serious side effects. The aim(More)
Aminoadamantanes such as 1-aminoadamantane (amantadine) and 1-amino-3,5-dimethyladamantane (memantine) are N-methyl-D-aspartate (NMDA) receptor antagonists which show antiparkinsonian-like activity in animal models and in Parkinson's patients. The issue of whether NMDA antagonism plays a role in the symptomatological antiparkinsonian activity of amantadine(More)
Memantine (1-amino-3,5-dimethyladamantan) was tested as an antagonist of N-methyl-D-aspartate (NMDA) receptors on cultured superior collicular and hippocampal neurones using the patch clamp technique and its actions were compared to those of Mg2+ ions, ketamine, dextrorphan, dextromethorphan, phencyclidine and dizocilpine (MK-801). Memantine (2-33 microM)(More)
The effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists, memantine (1-amino-3,5-dimethyladamantane) and MK-801 ((+)-5-methyl-10,11-dihydro-5H-dibenzocyclo-hepten-5,10-imin e maleate) were compared on synaptic transmission and long-term potentiation (LTP) in hippocampal slices and on NMDA-induced currents in cultured superior(More)
Patch- and concentration-clamp techniques were used to compare the effects of the uncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists (+)-MK-801 (dizocilpine, (+)-5-methyl-10, 11-dihydro-5H-dibenzocyclohepten-5, 10-imine maleate), ketamine, memantine (1-amino-3,5-dimethyladamantane) and amantadine (1-amino-adamantane) on agonist-induced inward(More)