Learn More
Adults presenting to an emergency department with acute respiratory illness were studied prospectively in an effort to identify sensitive clinical criteria for the diagnosis of pneumonia. Of 308 patients studied, 118 (38%) had definite or equivocal infiltrates and were considered to have pneumonia. No single symptom or sign was reliably predictive of(More)
Femtosecond infrared pump-probe spectroscopy of the N-H mode of a stable alpha-helix reveals two excited-state absorption bands, which disappear upon unfolding of the helix. A quantitative comparison with polaron theory shows that these two bands reflect two types of two-vibron bound states connected to the trapping of two vibrons at the same site and at(More)
We assess the performance of colored-noise thermostats to generate quantum mechanical initial conditions for molecular dynamics simulations, in the context of infrared spectra of large polyatomic molecules. Comparison with centroid molecular dynamics simulations taken as reference shows that the method is accurate in predicting line shifts and band widths(More)
The carboxylate side chains of Asp and Glu have significant coupling with the amide states of the backbone of the Villin headpiece. In two-dimensional spectroscopy, cross peaks are observed between these side chains and the main amide-I band. To model the absorption of the side chains, the electric field variations of vibrational frequencies of a carboxylic(More)
Revealing the structure and aggregation mechanism of amyloid fibrils is essential for the treatment of over 20 diseases related to protein misfolding. Coherent two-dimensional (2D) infrared spectroscopy is a novel tool that provides a wealth of new insight into the structure and dynamics of biomolecular systems. Recently developed ultrafast laser sources(More)
We report the observation of double-quantum coherence signals in a gas of potassium atoms at twice the frequency of the one-quantum coherences. Since a single atom does not have a state at the corresponding energy, this observation must be attributed to a collective resonance involving multiple atoms. These resonances are induced by weak interatomic(More)
Relaxation channels for two-vibron bound states in an anharmonic alpha-helix protein are studied. According to a recently established small polaron model [V. Pouthier, Phys. Rev. E 68, 021909 (2003)], it is shown that the relaxation originates in the interaction between the dressed anharmonic vibrons and the remaining phonons. This interaction is(More)
By using a Generalized Hubbard model for bosons, the energy transfer in a nonlinear quantum lattice is studied, with special emphasis on the interplay between local and nonlocal nonlinearity. For a strong local nonlinearity, it is shown that the creation of v quanta on one site excites a soliton band formed by bound states involving v quanta trapped on the(More)
The two-dimensional infrared photon echo spectrum of Antamanide (- (1)Val- (2)Pro- (3)Pro- (4)Ala- (5)Phe- (6)Phe- (7)Pro- (8)Pro- (9)Phe- (10)Pro-) in chloroform is calculated using an explicit solvent molecular dynamics (MD) simulation combined with a density functional theory (DFT) map for the effective vibrational Hamiltonian. Evidence for a strong(More)
The two-dimensional vibrational response of the disordered strongly fluctuating OH exciton band in liquid water is investigated using a new simulation protocol. The direct nonlinear exciton propagation generalizes the nonlinear exciton equations to include nonadiabatic time dependent Hamiltonian and transition dipole fluctuations. The excitonic picture is(More)