Learn More
The white rot fungus Pycnoporus cinnabarinus was characterized with respect to its set of extracellular phenoloxidases. Laccase was produced as the predominant extracellular phenoloxidase in conjunction with low amounts of an unusual peroxidase. Neither lignin peroxidase nor manganese peroxidase was detected. Laccase was produced constitutively during(More)
Lignin peroxidase is generally considered to be a primary catalyst for oxidative depolymerization of lignin by white-rot fungi. However, some white-rot fungi lack lignin peroxidase. Instead, many produce laccase, even though the redox potentials of known laccases are too low to directly oxidize the non-phenolic components of lignin. Pycnoporus cinnabarinus(More)
It was recently shown that the white rot basidiomycete Pycnoporus cinnabarinus secretes an unusual set of phenoloxidases when it is grown under conditions that stimulate ligninolysis (C. Eggert, U. Temp, and K.-E. L. Eriksson, Appl. Environ. Microbiol. 62:1151-1158, 1996). In this report we describe the results of a cloning and structural analysis of the(More)
The white-rot fungus, Pycnoporus cinnabarinus, provides an excellent model organism to elucidate the controversial role of laccase in lignin degradation. P. cinnabarinus produces laccase in one isoform as the predominant phenoloxidase in ligninolytic cultures, and neither LiP nor MnP are secreted. Yet, P. cinnabarinus degrades lignin very efficiently. In(More)
The epithelial cell adhesion molecule (EpCAM) is an integral transmembrane protein that is frequently overexpressed in embryonic stem cells, tissue progenitors, carcinomas and cancer-initiating cells. In cancer cells, expression of EpCAM is associated with enhanced proliferation and upregulation of target genes including c-myc. However, the exact molecular(More)
The phenoxazinone chromophore occurs in a variety of biological systems, including numerous pigments and certain antibiotics. It also appears to form as part of a mechanism to protect mammalian tissue from oxidative damage. During cultivation of the basidiomycete, Pycnoporus cinnabarinus, a red pigment was observed to accumulate in the culture medium. It(More)
Concentrated culture fluid of the wood-rotting basidiomycete Pycnoporus cinnabarinus showed biological activity against a variety of bacterial strains. The maximal inhibitory effect was obtained for Gram-positive bacteria of the genus Streptococcus. In general, inhibition was higher for Gram-positive than Gram-negative bacteria. P. cinnabarinus produces the(More)
When glucose is the carbon source, the white rot fungus Pycnoporus cinnabarinus produces a characteristic red pigment, cinnabarinic acid, which is formed by laccase-catalyzed oxidation of the precursor 3-hydroxyanthranilic acid. When P. cinnabarinus was grown on media containing cellobiose or cellulose as the carbon source, the amount of cinnabarinic acid(More)
The gene lcc3-2 encoding a second laccase of the white-rot fungus Pycnoporus cinnabarinus has been cloned, sequenced, and characterized. The isolated gene consists of 2840bp, with the coding region interrupted by ten introns and flanked by an upstream region in which putative CAAT and TATA boxes were identified. The cDNA of lcc3-2 contains an open reading(More)
A bleachery effluent from a sulfite process pulp mill, which was extracted with alkali and treated with oxygen and hydrogen peroxide (EOP), was treated with two fungi, Trametes versicolor and Stagonospora gigaspora. Trametes versicolor did not cause any depolymerization or degradation of effluent lignins but increased the amount of chromophores, whereas S.(More)