C. E. Dilley

Learn More
Staging of two laser-driven, relativistic electron accelerators has been demonstrated for the first time in a proof-of-principle experiment, whereby two distinct and serial laser accelerators acted on an electron beam in a coherently cumulative manner. Output from a CO2 laser was split into two beams to drive two inverse free electron lasers (IFEL)(More)
We present results of pulsed, narrowband amplification at 1540.6nm using a polarization maintaining, large mode area gain fiber codoped with erbium and ytterbium. At a repetition rate of 55 kHz, 2.9 W of average 1540.6nm power were generated with a pulse duration of 136 ns, corresponding to an SBS free peak power of 360 W. The amplified signal was frequency(More)
Laser-driven electron accelerators (laser linacs) offer the potential for enabling much more economical and compact devices. However, the development of practical and efficient laser linacs requires accelerating a large ensemble of electrons together ("trapping") while keeping their energy spread small. This has never been realized before for any laser(More)
091301-1 Presented are details of the staged electron laser acceleration (STELLA) experiment, which demonstrated high-trapping efficiency and narrow energy spread in a staged laser-driven accelerator. Trapping efficiencies of up to 80% and energy spreads down to 0.36% (1 ) were demonstrated. The experiment validated an approach that may be suitable for the(More)
This work describes an experiment to demonstrate, for the first time, laser wakefield acceleration (LWFA), driven by 10.6-/spl mu/m light from a CO/sub 2/ laser. This experiment is also noteworthy because it will operate in a pseudoresonant LWFA regime, in which the laser-pulse-length is too long for resonant LWFA, but too short for self-modulated LWFA.(More)
The staged electron laser acceleration (STELLA) experiment demonstrated staging between two laser-driven devices, high trapping efficiency of microbunches within the accelerating field and narrow energy spread during laser acceleration. These are important for practical laser-driven accelerators. STELLA used inverse free electron lasers, which were chosen(More)
  • 1