C. De Wagter

Learn More
The noninvasive thermometry method is based on the temperature dependence of the proton resonance frequency (PRF). High-quality temperature images can be obtained from phase information of standard gradient-echo sequences with an accuracy of 0.2 degrees C in phantoms. This work was focused on the in vivo capabilities of this method. An experimental setup(More)
— Autonomous flight of Flapping Wing Micro Air Vehicles (FWMAVs) is a major challenge in the field of robotics, due to their light weight and the flapping-induced body motions. In this article, we present the first FWMAV with onboard vision processing for autonomous flight in generic environments. In particular, we introduce the DelFly 'Explorer', a 20-gram(More)
— A visual cue is introduced that exploits the visual appearance of a single image to estimate the proximity to an obstacle. In particular, the appearance variation cue captures the variation in texture and / or color in the image, and is based on the assumption that there is less such variation when the camera is close to an obstacle. Random sampling is(More)
In BANG gel dosimetry, the spin-spin relaxation rate, R2 = I/T2, is related to the radiation dose that has been delivered to the gel phantom. R2 is calculated by fitting the pixel intensities of a set of differently T2-weighted base images. In gel dosimetry for radiotherapy, an accuracy of 5% in dose and 3 mm spatially, whichever is lower, is the objective.(More)
In BANG gel dosimetry, the spin-spin relaxation rate, R2 = 1/T2, is related to radiation dose that has been delivered to a gel phantom. R2 is calculated by fitting the pixel intensities of a set of differently T2-weighted base images. The accuracy that is aimed for in this quantitative MR application is about 5% relative to the maximum dose. In a(More)
The aim of this work was to investigate MR-based polymer gel dosimetry as a three-dimensional (3D) dosimetry technique in conformal radiotherapy. A cylindrical container filled with polymer gel was placed in a water-filled torso phantom to verify a treatment plan for the conformal irradiation of a mediastinal tumor located near the esophagus. Magnetic(More)
Small robotic systems such as Micro Air Vehicles (MAVs) need to react quickly to their dynamic environments, while having only a limited amount of energy and processing onboard. In this article, sub-sampling of local image samples is investigated as a straightforward and broadly applicable approach to improve the computational efficiency of vision(More)
A challenging problem in artificial intelligence is to achieve vision-based autonomous indoor flight with Micro Air Vehicles. Approaches to this problem currently do not make use of image appearance features, because these features generally are computationally expensive. In this article, we deliver a proof-of-concept that appearance features can be(More)
Autonomous flight of pocket drones is challenging due to the severe limitations on on-board energy, sensing, and processing power. However, tiny drones have great potential as their small size allows maneuvering through narrow spaces while their small weight provides significant safety advantages. This paper presents a com-putationally efficient algorithm(More)