Learn More
Repeated loading of the fingertips has been postulated to contribute to tendon and nerve disorders at the wrist during activities associated with prolonged fingertip loading such as typing. To fully understand the pathomechanics of these soft tissue disorders, the role of the fingertip pulp in attenuating the applied dynamic forces must be known. An(More)
Three-dimensional finite element stress analysis of bone is a key to understanding bone remodelling, assessing fracture risk, and designing prostheses; however, the cost and complexity of predicting the stress field in bone with accuracy has precluded the routine use of this method. A new, automated method of generating patient-specific three-dimensional(More)
Existing isometric force models can be used to predict tension in the finger flexor tendon, however, they assume a specific distribution of forces across the tendons of the fingers. These assumptions have not been validated or explored by experimental methods. To determine if the force distributions repeatably follow one pattern the in vivo tension of the(More)
The fingertip pulp modulates the force transmitted to the underlying musculoskeletal system during finger contact on external bodies. A model of the fingertip pulp is needed to represent the transmission of forces to the tendons, muscles, and bone during these contacts. In this study, a structural model of the in vivo human fingertip was developed that(More)
A single keystroke during touch-typing is a rapid, goal-directed motion of the fingertip which consists of two single-direction movements. The neural control and the role of the finger extrinsic musculature during typing have not yet been explained. The fingertip motion and force, and the intramuscular electromyographic (EMG) activity (fine-wire) of the(More)
A second order, linear oscillator transfer function model is fit to the measured transfer function relating the abduction-adduction rotation of the first finger to the applied moment. Nearly constant isometric contractions of the first palmar and dorsal interossei are maintained by the subjects during the measurements. The stiffness and damping components(More)
Tensioning is the saw prestressing procedure most commonly used in the forest products industry to increase the stability of thin circular saws. This procedure stiffens the saw blade by introducing favorable in-plane residual stresses either by local plastic deformation or by local heating. In industry today, rolling is the standard procedure for(More)
Reference coordinates based on the finite helical axis for flexion of the knee from 0 to 90 deg are proposed. Six degree-of-freedom tracking allows the use of such a helical axis as a kinematic landmark for knee motion representation. Data from five human subjects in vivo are presented as a path of finite helical axes for flexion of the knee from 20 to 80(More)
Systematic, well-designed research provides the most effective approach to the solution of many problems facing highway administrators and engineers. Often, highway problems are of local interest and can best be studied by highway departments individually or in cooperation with their state universities and others. However, the accelerating growth of highway(More)
The objective of this study was to evaluate the effect of implantation of porous-coated anatomic medullary fitting prostheses on stress in the proximal femur. Three-dimensional finite element models of a cadaveric femur before and after implantation were used to evaluate the resulting changes in stress in the bone. Models of the femur were generated(More)