Learn More
In tropical Africa, Anopheles funestus is one of the three most important malaria vectors. We physically mapped 157 A. funestus complementary DNAs (cDNAs) to the polytene chromosomes of this species. Sequences of the cDNAs were mapped in silico to the A. gambiae genome as part of a comparative genomic study of synteny, gene order, and sequence conservation(More)
BACKGROUND Speciation among members of the Anopheles gambiae complex is thought to be promoted by disruptive selection and ecological divergence acting on sets of adaptation genes protected from recombination by polymorphic paracentric chromosomal inversions. However, shared chromosomal polymorphisms between the M and S molecular forms of An. gambiae and(More)
Chromosomal inversions are thought to confer a selective advantage in alternative habitats by protecting co-adapted alleles from recombination. The frequencies of two inversions (2La and 2Rb) of the afro-tropical malaria mosquito Anopheles gambiae change gradually along geographical clines, increasing in frequency with degree of aridity. Such clines can(More)
The association between fitness-related phenotypic traits and an environmental gradient offers one of the best opportunities to study the interplay between natural selection and migration. In cases in which specific genetic variants also show such clinal patterns, it may be possible to uncover the mutations responsible for local adaptation. The malaria(More)
BACKGROUND In the city of Yaoundé in Cameroon malaria is predominately transmitted by the M and S molecular forms of Anopheles gambiae and both are resistant to the pyrethroid insecticides and DDT. Mutations in the target site of these insecticides, present at a high frequency in malaria vectors in this city, contribute to this resistance profile. To(More)
BACKGROUND As Anopheles funestus is one of the principal Afro-tropical malaria vectors, a more complete understanding of its population structure is desirable. In West and Central Africa, An. funestus population structure is complicated by the coexistence of two assortatively mating chromosomal forms. Effective population size (Ne) is a key parameter in(More)
The M and S molecular forms of Anopheles gambiae s.s. Giles appear to have speciated in West Africa and the M form is now formally named An. coluzzii Coetzee & Wilkerson sp.n. and the S form retains the nominotypical name (abbreviated here to An. gambiae). Reproductive isolation is thought to be the main barrier to hybridisation; even though both species(More)
BACKGROUND Ongoing lineage splitting within the African malaria mosquito Anopheles gambiae is compatible with ecological speciation, the evolution of reproductive isolation by divergent natural selection acting on two populations exploiting alternative resources. Divergence between two molecular forms (M and S) identified by fixed differences in rDNA, and(More)
BACKGROUND Anopheles gambiae, the principal vector of malignant malaria in Africa, occupies a wide range of habitats. Environmental flexibility may be conferred by a number of chromosomal inversions non-randomly associated with aridity, including 2La. The purpose of this study was to determine the physiological mechanisms associated with the 2La inversion(More)
BACKGROUND Urban malaria is becoming a major health priority across Africa. A study was undertaken to assess the importance of urban pollution and agriculture practice on the distribution and susceptibility to insecticide of malaria vectors in the two main cities in Cameroon. METHODS Anopheline larval breeding sites were surveyed and water samples(More)