Learn More
Replacing GaAs by graphene to realize more practical quantum Hall resistance standards (QHRS), accurate to within 10(-9) in relative value, but operating at lower magnetic fields than 10 T, is an ongoing goal in metrology. To date, the required accuracy has been reported, only few times, in graphene grown on SiC by Si sublimation, under higher magnetic(More)
The quantum Hall effect provides a universal standard for electrical resistance that is theoretically based on only the Planck constant h and the electron charge e. Currently, this standard is implemented in GaAs/AlGaAs, but graphene's electronic properties have given hope for a more practical device. Here, we demonstrate that the experimental conditions(More)
Using high-temperature annealing conditions with a graphite cap covering the C-face of, both, on axis and 8° off-axis 4H-SiC samples, large and homogeneous single epitaxial graphene layers have been grown. Raman spectroscopy shows evidence of the almost free-standing character of these monolayer graphene sheets, which was confirmed by magneto-transport(More)
By reassembling thin isolated atomic planes of hexagonal borum nitride (hBN) with a few layer phosphorene black phosphorus (BP), hBN/BP/hBN heterostructures are mechanically stacked to devise high-efficiency THz photodetectors operating in the 0.3-0.65 THz range, from 4 K to 300 K, with a record signal-to-noise ratio of 20 000.
We report on the stability of the quantum Hall plateau in wide Hall bars made from a chemically gated graphene film grown on SiC. The ν=2 quantized plateau appears from fields B≃5  T and persists up to B≃80  T. At high current density, in the breakdown regime, the longitudinal resistance oscillates with a 1/B periodicity and an anomalous phase, which we(More)
In the scope of a possible redefinition in the SI, the LNE has decided to develop a new Thompson Lampard calculable capacitor to decrease its uncertainty on the value of von Klitzing constant, R K , to a level of one part in 10 8. This paper gives an overview of the French experiment. The main characteristics of the new French standard are detailed. The(More)
It has recently been shown that electronic states in bulk gapless HgCdTe offer another realization of pseudo-relativistic three-dimensional particles in condensed matter systems. These single valley relativistic states, massless Kane fermions, cannot be described by any other relativistic particles. Furthermore, the HgCdTe band structure can be continuously(More)
  • 1