Learn More
This paper describes the existence of two pharmacologically distinct types of Ca2+ channels in rat skeletal muscle cells (myoballs) in culture. The first class of Ca2+ channels is insensitive to the dihydropyridine (DHP) (+)-PN 200-110; the second class of Ca2+ channels is blocked by low concentrations of (+)-PN 200-110. The two pharmacologically different(More)
Extracellular pH variations are seen as the principal endogenous signal that triggers activation of Acid-Sensing Ion Channels (ASICs), which are basically considered as proton sensors, and are involved in various processes associated with tissue acidification. Here, we show that human painful inflammatory exudates, displaying non-acidic pH, induce a slow(More)
We report the case of a patient with bilateral and symmetrical T2 hyperintensities of the middle cerebellar peduncles. She had a history of left pontine infarction 8 months before. This was attributed to bilateral Wallerian degeneration. MR Spectroscopy showed decreased N-acetyl aspartate/Creatine (NAA/Cr) ratio in the cerebellar peduncles as well as in the(More)
Calcium mishandling in Duchenne dystrophic muscle suggested that dystrophin, a membrane-associated cytoskeleton protein, might regulate calcium signaling cascade such as calcium influx pathway. It was previously shown that abnormal calcium entries involve uncontrolled stretch-activated currents and store-operated Ca2+ currents supported by TRPC1 channels.(More)
The whole-cell patch-clamp technique coupled with intracellular [Ca2+] measurements was used to investigate the sodium-calcium exchange mechanism in rat skeletal muscle cells in primary culture. Replacing external Na+ ions with Li+ or N-methyl-D-glucamine (NMDG+) ions generated outward currents which were correlated with significant increases of free(More)
We present here evidence for the enhancement of an inositol 1,4,5-trisphosphate (IP3) mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(-)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, we demonstrated that calcium rise, induced by the(More)
We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)-mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(-)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium(More)
The sensitivity of Na+ channels to inhibition by Cd2+ and Zn2+ was studied in 22Na+ uptake experiments after stabilization of an open conformation of the Na+ channels with different neurotoxins and in voltage clamp experiments. Six different cell types of neuronal, cardiac or skeletal muscle origin were surveyed. Three cell types possess Na+ channels that(More)
Many studies of in vitro skeletal myogenesis have demonstrated that fusion of myoblasts into multinucleated myotubes is regulated by calcium-dependent processes. Calcium ions appear to be necessary at the outer face of the membrane, and an additional internal calcium increase seems required to promote fusion of aligned myoblasts. It has been proposed that a(More)
Defective expression of dystrophin in muscle cells is the primary feature of Duchenne muscular dystrophy (DMD), which is accompanied by fiber necrosis and intracellular calcium mishandling. These features led to the hypothesis that dystrophin could control calcium movements. Calcium mishandling in human DMD myotubes is dependent on contraction and/or(More)