Learn More
1. S 16257 is a new bradycardic agent. Its electropharmacological profile has been compared to that of the known bradycardic compound UL-FS 49 (Zatebradine). Intracellular recordings of action potentials (APs) were performed with conventional glass microelectrodes. 2. In the rabbit isolated sino-atrial node (SAN) tissue, S 16257 and UL-FS 49 (1 microM, 3(More)
The present study was designed to test the ability of regenerated endothelium to evoke endothelium-dependent hyperpolarizations. Hyperpolarizations induced by serotonin and bradykinin were compared in isolated porcine coronary arteries with native or regenerated endothelium, 4 weeks after balloon endothelial denudation. The experiments were performed in the(More)
The effects of the two isomers, (+)-S 16257 and (-)-S 16260, of a new bradycardic agent, (+/-)-S 15544 (7,8-dimethoxy 3-[3-[[(4.5-dimethoxybenzocyclobutan-1-yl)methyl] methylamino]propyl]1,3,4,5-tetrahydro-2H-3-benzazepin-2-one), were compared in vitro and in vivo on cardiac spontaneous rate and repolarization time. In the isolated rabbit sino-atrial node,(More)
Unsaturated fatty acids constitutive of cardiac membranal lipid matrix are one of the primary targets for reactive oxygen species generated during ischemia-reperfusion cycle. Lipid peroxidation is a cascade of intricate reactions involving the successive formations of fatty acids hydroperoxides and aldehydic compounds such as alkenals derived from the(More)
OBJECTIVE As a result of oxidative stress to membrane lipid matrix, the peroxidation of polyunsaturated fatty acids induced the transient formation of lipid hydroperoxides (ROOH). The aim of this study was to evaluate the damaging effects of ROOH on the cardiac cell and the link between the alterations observed and intracellular calcium overload. METHODS(More)
Oxidative stress induced by reactive oxygen species is one aspect of the deleterious mechanisms involved in myocardial post-ischemic reperfusion injury. The antioxidant properties of the new molecule S12340 (8-[3-(3,5-diterbutyl-4-hydroxyphenyl-thio)propyl]-1-oxa-2- oxo-3,8-diazaspiro[4.5]decane) were evaluated using three successive in vitro approaches(More)
  • 1