C. Bordas

Learn More
The pedunculopontine nucleus (PPN) is a part of the reticular activating system and one of the main sources of the cholinergic fibers in the midbrain, while it is also subject to cholinergic modulation. This nucleus is known to be a structure that controls sleep-wake cycles, arousal, and locomotion. Neurons of the PPN are targets of several neuromodulatory(More)
To describe the microscopic properties of matter, quantum mechanics uses wave functions, whose structure and time dependence is governed by the Schrödinger equation. In atoms the charge distributions described by the wave function are rarely observed. The hydrogen atom is unique, since it only has one electron and, in a dc electric field, the Stark(More)
In the 1980s Demkov, Kondratovich, and Ostrovsky and Kondratovich and Ostrovsky proposed an experiment based on the projection of slow electrons emitted by a photoionized atom onto a position-sensitive detector. In the case of resonant excitation, they predicted that the spatial electron distribution on the detector should represent nothing else but a(More)
The pedunculopontine nucleus is known as a cholinergic nucleus of the reticular activating system, participating in regulation of sleep and wakefulness. Besides cholinergic neurons, it consists of GABAergic and glutamatergic neurons as well. According to classical and recent studies, more subgroups of neurons were defined. Groups based on the(More)
In nonhydrogenic atoms in a dc electric field, the finite size of the ionic core introduces a coupling between quasibound Stark states that leads to avoided crossings between states that would otherwise cross. Near an avoided crossing, the interacting states may have decay amplitudes that cancel each other, decoupling one of the states from the ionization(More)
  • 1