Learn More
Since relative or absolute insulin deficiency and insulin insensitivity are involved in the aetiology of non-insulin-dependent diabetes mellitus (NIDDM), we examined whether patients with NIDDM exhibit genetic variability in the coding region of insulin receptor substrate-1 (IRS-1), a candidate gene that is ubiquitous in insulin-sensitive and insulin-like(More)
We previously discovered two aminoacid polymorphisms in codons 513 and 972 of the protein insulin receptor substrate-1 (IRS-1), which is important in cellular insulin action. We have investigated whether these polymorphisms are associated with changes in insulin sensitivity in a random sample of young healthy adults. Insulin sensitivity and secretion were(More)
The regulatory G-subunit of the glycogen-associated form of protein phosphatase 1 (PP1) plays a crucial part in muscle tissue glycogen synthesis and breakdown. As impaired insulin stimulated glycogen synthesis in peripheral tissues is considered to be a pathogenic factor in subsets of non-insulin-dependent diabetes mellitus (NIDDM) and obesity, the(More)
Impaired insulin-stimulated glycogen synthesis of peripheral tissues is a characteristic feature of many patients with non-insulin-dependent diabetes mellitus (NIDDM) and their first-degree relatives with normal glucose tolerance, suggesting putative inherited defects in this metabolic pathway. In previous studies, we have failed to reveal mutations in the(More)
Based on recent studies of the abnormal physiology and biochemistry of the glycogen synthesis in skeletal muscle of non-insulin-dependent diabetes mellitus (NIDDM) patients and their first-degree relatives, the key enzyme of this pathway, glycogen synthase (GS), is considered a candidate gene in the pathogenesis of insulin resistance. Comparing matched(More)
Due to alternative splicing of exon 11 of the receptor gene, the human insulin receptor exists in two forms, that have distinct tissue-specific expression and are functionally different. Needle biopsies obtained from vastus lateralis muscle from 20 patients with noninsulin-dependent diabetes mellitus (NIDDM) and 20 normal control subjects were analyzed for(More)
Congenital muscle fiber type disproportion myopathy (CFTDM) is a chronic, nonprogressive muscle disorder characterized by universal muscle hypotrophy and growth retardation. Histomorphometric examination of muscle shows a preponderance of smaller than normal type 1 fibers and overall fiber size heterogeneity. Concomitant endocrine dysfunctions have not been(More)
After entering the muscle cell, glucose is immediately and irreversibly phosphorylated to glucose-6-phosphate by hexokinases (HK) I and II. Previous studies in rodents have shown that HKII may be the dominant HK in skeletal muscle. Reduced insulin-stimulated glucose uptake and reduced glucose-6-phosphate concentrations in muscle have been found in(More)
Human hexokinase (HK) II, a glucose phosphorylating enzyme in muscle tissue, plays a central role in glucose metabolism. Since reduced insulin-stimulated glucose uptake and reduced glucose-6-phosphate content in muscle have been demonstrated in pre-non-insulin-dependent diabetes mellitus (pre-NIDDM) and NIDDM subjects, we have examined the coding region of(More)
Constitutive activation of phosphoinositide 3-kinase (PI3K) stimulates glucose transport and GLUT4 glucose transporter translocation to the plasma membrane in adipocytes. To determine whether a direct interaction of PI3K with GLUT4-containing vesicles (hereafter called GLUT4 vesicles) is important for the effect of insulin on GLUT4 translocation, we(More)