Learn More
Gene transfer of tyrosine hydroxylase (TH) in animal models of Parkinson's disease (PD), using either genetically modified cells or recombinant virus vectors, has produced partial restoration of behavioral and biochemical deficits. The limited success of this approach may be related to the availability of the cofactor, tetrahydrobiopterin (BH4), because(More)
Investigations of gene therapy for Parkinson's disease have focused primarily on strategies that replace tyrosine hydroxylase. In the present study, the role of aromatic L-amino acid decarboxylase in gene therapy with tyrosine hydroxylase was examined by adding the gene for aromatic L-amino acid decarboxylase to our paradigm using primary fibroblasts(More)
Parkinson's disease (PD) is a neurodegenerative disorder characterized by a progressive loss of the dopaminergic neurons of the substantia nigra pars compacta (SNpc). Although various treatments are successfully used to alleviate the symptoms of PD, none of them prevents or halts the neurodegenerative process of the disease. Brain-derived neurotrophic(More)
  • 1