Learn More
Plasma density gradients in a gas jet were used to control the wake phase velocity and trapping threshold in a laser wakefield accelerator, producing stable electron bunches with longitudinal and transverse momentum spreads more than 10 times lower than in previous experiments (0.17 and 0.02 MeV/c FWHM, respectively) and with central momenta of 0.76+/-0.02(More)
Laser-driven accelerators, in which particles are accelerated by the electric field of a plasma wave (the wakefield) driven by an intense laser, have demonstrated accelerating electric fields of hundreds of GV m(-1) (refs 1-3). These fields are thousands of times greater than those achievable in conventional radio-frequency accelerators, spurring interest(More)
The temporal profile of relativistic laser-plasma-accelerated electron bunches has been characterized. Coherent transition radiation at THz frequencies, emitted at the plasma-vacuum boundary, was measured through electro-optic sampling. Frequencies up to the crystal detection limit of 4 THz were observed. Comparison between data and theory indicates that(More)
X-ray spectroscopy is used to obtain single-shot information on electron beam emittance in a low-energy-spread 0.5 GeV-class laser-plasma accelerator. Measurements of betatron radiation from 2 to 20 keV used a CCD and single-photon counting techniques. By matching x-ray spectra to betatron radiation models, the electron bunch radius inside the plasma is(More)
Multi-GeV electron beams with energy up to 4.2 GeV, 6% rms energy spread, 6 pC charge, and 0.3 mrad rms divergence have been produced from a 9-cm-long capillary discharge waveguide with a plasma density of ≈7×10¹⁷ cm⁻³, powered by laser pulses with peak power up to 0.3 PW. Preformed plasma waveguides allow the use of lower laser power compared to unguided(More)
Compact laser-plasma accelerators can produce high energy electron beams with low emittance, high peak current but a rather large energy spread. The large energy spread hinders the potential applications for coherent free-electron laser (FEL) radiation generation. We discuss a method to compensate the effects of beam energy spread by introducing a(More)
Unphysical heating and macroparticle trapping that arise in the numerical modeling of laser wakefield accelerators using particle-in-cell codes are investigated. A dark current free laser wakefield accelerator stage, in which no trapping of background plasma electrons into the plasma wave should occur, and a highly nonlinear cavitated wake with(More)
Coherent radiation in the 0.3-3 THz range has been generated from femtosecond electron bunches at a plasma-vacuum boundary via transition radiation. The bunches produced by a laser-plasma accelerator contained 1.5 nC of charge. The THz energy per pulse within a limited 30 mrad collection angle was 3-5 nJ and scaled quadratically with bunch charge,(More)
The electric field profiles of broad-bandwidth coherent terahertz (THz) pulses, emitted by laser-wakefield-accelerated electron bunches, are studied. The near-single-cycle THz pulses are measured with two single-shot techniques in the temporal and spatial domains. Spectra of 0-6 THz and peak fields up to approximately or = 0.4 MV cm(-1) are observed. The(More)
Transition radiation generated by an electron beam, produced by a laser wakefield accelerator operating in the self-modulated regime, crossing the plasma-vacuum boundary is considered. The angular distributions and spectra are calculated for both the incoherent and the coherent radiation. The effects of the longitudinal and transverse momentum distributions(More)