Learn More
We implement arbitrary maps between pure states in the 16-dimensional Hilbert space associated with the ground electronic manifold of ^{133}Cs. This is accomplished by driving atoms with phase modulated radio-frequency and microwave fields, using modulation waveforms found via numerical optimization and designed to work robustly in the presence of(More)
The experimental realization of large-scale many-body systems in atomic-optical architectures has seen immense progress in recent years, rendering full tomography tools for state identification inefficient, especially for continuous systems. To work with these emerging physical platforms, new technologies for state identification are required. Here we(More)
Unitary transformations are the most general input-output maps available in closed quantum systems. Good control protocols have been developed for qubits, but questions remain about the use of optimal control theory to design unitary maps in high-dimensional Hilbert spaces, and about the feasibility of their robust implementation in the laboratory. Here we(More)
  • 1