César de Julián Fernández

Learn More
We report on the unprecedented direct observation of spin-polarization transfer across colloidal magneto-plasmonic Au@Fe-oxide core@shell nanocrystal heterostructures. A magnetic moment is induced into the Au domain when the magnetic shell contains a reduced Fe-oxide phase in direct contact with the noble metal. An increased hole density in the Au states(More)
Nanotechnology for biomedicine has recently attracted increasing interest from the scientific community. In particular, among the different nanodevices suitable for this application, multifunctionalizable hybrid nanoparticles are one of the most investigated research topics. Here we present a detailed physico-chemical characterization of hybrid(More)
Generating, controlling, and monitoring spin effects in conducting nanostructures by using light is a highly important scientifi c and technological challenge. [ 1 , 2 ] Moreover the possibility of coupling the optical and magnetic properties in nanostructured materials can lead to the creation of novel devices with photonic and magnetic properties. Control(More)
We describe an environmentally friendly, top-down approach to the synthesis of Au89Fe11 nanoparticles (NPs). The plasmonic response of the gold moiety and the magnetism of the iron moiety coexist in the Au89Fe11 nanoalloy with strong modification compared to single element NPs, revealing a non-linear surface plasmon resonance dependence on the iron fraction(More)
Sorafenib is an anticancer drug approved by the Food and Drug Administration for the treatment of hepatocellular and advanced renal carcinoma. The clinical application of sorafenib is promising, yet limited by its severe toxic side effects. The aim of this study is to develop sorafenib-loaded magnetic nanovectors able to enhance the drug delivery to the(More)
Monodispersed Fe3O4 nanoparticles with comparable size distributions have been synthesized by two different synthesis routes, co-precipitation and thermal decomposition. Thanks to the different steric stabilizations, the described samples can be considered as a model system to investigate the effects of magnetic dipolar interactions on the aggregation(More)
The use of non-supported Fe nanoparticles in the hydrogenation of unsaturated C-C bonds is a green catalytic concept at the frontier between homogeneous and heterogeneous catalysis. Iron nanoparticles can be obtained by reducing Fe salts with strong reductants in various solvents. FeCl(3) reduced by 3 equivalents of EtMgCl forms an active catalyst for the(More)
  • 1