Learn More
Plants buffer increasing atmospheric carbon dioxide (CO2) concentrations through enhanced growth, but the question whether nitrogen availability constrains the magnitude of this ecosystem service remains unresolved. Synthesizing experiments from around the world, we show that CO2 fertilization is best explained by a simple interaction between nitrogen(More)
Norby et al center their critique on the design of the data set and the response variable used. We address these criticisms and reinforce the conclusion that plants that associate with ectomycorrhizal fungi exhibit larger biomass and growth responses to elevated CO2 compared with plants that associate with arbuscular mycorrhizae.
Plants buffer increasing atmospheric carbon dioxide (CO 2) concentrations through enhanced growth, but the question whether nitrogen availability constrains the magnitude of this ecosystem service remains unresolved. Synthesizing experiments from around the world, we show that CO 2 fertilization is best explained by a simple interaction between nitrogen(More)
In this work, we apply a dynamic modelling approach to analyse the habitat loss of the Canarian houbara bustard (Chlamydotis undulata fuerteventurae). This tool allows us to assess the effects of the socio-economic and environmental interactions on the factors threatening the habitat and to carry out a prospective analysis. The results show a potential(More)
  • 1