#### Filter Results:

#### Publication Year

2005

2014

#### Publication Type

#### Co-author

#### Publication Venue

#### Key Phrases

Learn More

- Raul Antonio Ferraz, César Polcino Milies
- Finite Fields and Their Applications
- 2007

We compute the number of simple components of a semisimple finite abelian group algebra and determine all cases where this number is minimal; i.e. equal to the number of simple components of the rational group algebra of the same group. This result is used to compute idempotent generators of minimal abelian codes, extending results of Arora and Pruthi [ We… (More)

- Marinês Guerreiro, Raul Antonio Ferraz, César Polcino Milies
- 2011 IEEE Information Theory Workshop
- 2011

We give counterexamples to show that some results regarding equivalence of abelian group codes, that have been in the literature for quite some time, are not correct. Also, we give examples of special families of abelian groups for which these results do hold.

- Raul Antonio Ferraz, Marinês Guerreiro, César Polcino Milies
- IEEE Trans. Information Theory
- 2014

—Let G be a finite abelian group and F a field such that char(F) | |G|. Denote by FG the group algebra of G over F. A (semisimple) abelian code is an ideal of FG. Two codes I1 and I2 of FG are G-equivalent if there exists an automorphism ψ of G whose linear extension to FG maps I1 onto I2. In this paper we give a necessary and sufficient condition for… (More)

- César Polcino Milies, Fernanda Diniz de Melo
- IEEE Transactions on Information Theory
- 2013

In this paper, the minimum weight and the dimension of all cyclic codes of length p<sup>n</sup> over a field F<sub>q</sub>, are computed, when p is an odd prime and F<sub>q</sub> a finite field with q̅ elements, assuming that F<sub>q</sub> generates the group of invertible elements of Z<sub>p</sub><sup>n</sup>. Furthermore, the minimum weight and… (More)

—We consider binary abelian codes of length p n q m where p and q are prime rational integers under some restrictive hypotheses. In this case, we determine the idempotents generating minimal codes and either the respective weights or bounds of these weights. We give examples showing that these bounds are attained in some cases.

—We consider binary abelian codes of length p n q m where p and q are prime rational integers under some restrictive hypotheses. In this case, we determine the idempotents generating minimal codes and either the respective weights or bounds of these weights. We give examples showing that these bounds are attained in some cases.

- ‹
- 1
- ›