César Polcino Milies

  • Citations Per Year
Learn More
We compute the number of simple components of a semisimple finite abelian group algebra and determine all cases where this number is minimal; i.e. equal to the number of simple components of the rational group algebra of the same group. This result is used to compute idempotent generators of minimal abelian codes, extending results of Arora and Pruthi [S.K.(More)
Let R be a commutative ring, G a group and RG its group ring. Let φ : RG → RG denote the R-linear extension of an involution φ defined on G. An element x in RG is said to be φantisymmetric if φ(x) = −x. A characterization is given of when the φ-antisymmetric elements of RG commute. This is a completion of earlier work. keywords: Involution; group ring;(More)
Let G be a finite abelian group and F a field such that char(F) 6 | |G|. Denote by FG the group algebra of G over F. A (semisimple) abelian code is an ideal of FG. Two codes I1 and I2 of FG are G-equivalent if there exists an automorphism ψ of G whose linear extension to FG maps I1 onto I2. In this paper we give a necessary and sufficient condition for(More)
  • 1