César Daniel Perciante

  • Citations Per Year
Learn More
We present a novel electric-field and voltage sensor based on the electro-optical properties of polymer-dispersed liquid-crystals (PDLCs). In principle, the transmittance of PDLCs is a nonlinear function of the applied electrical field. To measure an AC field we superposed to it a known DC field. This allowed us to achieve linearization of the PDLC response(More)
The purpose of this paper is threefold. The first aim is to discuss the superlensing effect in left-handed material presented originally by Veselago [Sov. Phys. Usp.10, 509 (1968)] and Pendry [Phys. Rev. Lett.85, 3966 (2000)] for n=-1. Our discussion is based on an integral expression for the electromagnetic fields (i.e., the Extinction Theorem), and it(More)
We demonstrate that one can cancel the bending-induced linear birefringence in single-mode fibers by inducing a controlled anisotropy in a direction orthogonal to the bending plane. In particular, the controlled anisotropy can be generated by application of a lateral compressive stress on the fiber. This effect can be applied for the construction of(More)
Phase-shifting (PS) is an important technique for phase retrieval in interferometry (and three-dimensional profiling by fringe projection) that requires a series of intensity measurements with known phase-steps. Usual PS algorithms are based on the assumption that the phase-steps are evenly spaced. In practice, however, this assumption is often not(More)
A new method for real-time edge enhancement and image equalization using photochromic filters is presented. The reversible self-adaptive capacity of photochromic materials is used for creating an unsharp mask of the original image. This unsharp mask produces a kind of self filtering of the original image. Unlike the usual Fourier (coherent) image(More)
Three-dimensional shape measurements by sinusoidal fringe projection using phase-shifting interferometry algorithms are distorted by the nonlinear response in intensity of commercial video projectors and digital cameras. To solve the problem, we present a method that consists in projecting and acquiring a temporal sequence of strictly binary patterns, whose(More)
We describe a method for the compensation of gain unbalance in optical sensors with separate light path that involve two separate detection and conditioning electronic devices. The method is based on the digital measurement of harmonics of the output intensities from each path by means of the fast Fourier transform algorithm. The quotient of the amplitude(More)