Céline Masclaux-Daubresse

Learn More
For the first time in Arabidopsis thaliana, this work proposes the identification of quantitative trait loci (QTLs) associated with leaf senescence and stress response symptoms such as yellowing and anthocyanin-associated redness. When Arabidopsis plants were cultivated under low nitrogen conditions, we observed that both yellowing of the old leaves of the(More)
Glutamine synthetase and asparagine synthetase are two master enzymes involved in ammonium assimilation in plants. Their roles in nitrogen remobilization and nitrogen use efficiency have been proposed. In this report, the genes coding for the cytosolic glutamine synthetases (HvGS1) and asparagine synthetases (HvASN) in barley were identified. In addition to(More)
The present study analyses changes in nitrogen compounds, amino acid composition, and glutamate metabolism in the resurrection plant Sporobolus stapfianus during dehydration stress. Results showed that older leaves (OL) were desiccation-sensitive whereas younger leaves (YL) were desiccation-tolerant. OL lost their soluble protein more rapidly, and to a(More)
Sequential and monocarpic senescence are observed at vegetative and reproductive stages, respectively. Both facilitate nitrogen (N) remobilization and control the duration of carbon (C) fixation. Genetic and environmental factors control N and C resource allocation to seeds. Studies of natural variation in Arabidopsis thaliana revealed differences between(More)
Nineteen Arabidopsis accessions grown at low (LOW N) and high (HIGH N) nitrate supplies were labelled using (15)N to trace nitrogen remobilization to the seeds. Effects of genotype and nutrition were examined. Nitrate availability affected biomass and yield, and highly modified the nitrogen concentration in the dry remains. Surprisingly, variations of(More)
To investigate the role of stress in nitrogen management in plants, the effect of pathogen attack, elicitors, and phytohormone application on the expression of the two senescence-related markers GS1 (cytosolic glutamine synthetase EC and GDH (glutamate dehydrogenase, EC involved in nitrogen mobilization in senescing leaves of tobacco(More)
Although an involvement of metabolic signals in the regulation of plant senescence has been demonstrated in a range of studies, the exact signalling pathways remain largely unresolved. For leaves, evidence supports a role of sugar accumulation in the initiation and/or acceleration of senescence. However, regulation of senescence or ageing may respond to(More)
The extent to which leaf senescence is induced by nitrogen deficiency or by sugar accumulation varies between natural accessions of Arabidopsis (Arabidopsis thaliana). Analysis of senescence in plants of the Bay-0 x Shahdara recombinant inbred line (RIL) population revealed a large variation in developmental senescence of the whole leaf rosette, which was(More)
Nitrogen plays an essential role in the nutrient relationship between plants and pathogens. Some studies report that the nitrogen-mobilizing plant metabolism that occurs during abiotic and biotic stress could be a 'slash-and-burn' defence strategy. In order to study nitrogen recycling and mobilization in host plants during pathogen attack and invasion, the(More)
A total of 16 BnaGLN1 genes coding for cytosolic glutamine synthetase isoforms (EC were found in the Brassica napus genome. The total number of BnaGLN1 genes, their phylogenetic relationships, and genetic locations are in agreement with the evolutionary history of Brassica species. Two BnaGLN1.1, two BnaGLN1.2, six BnaGLN1.3, four BnaGLN1.4, and(More)