Céline Guinez

Learn More
OBJECTIVE Carbohydrate-responsive element-binding protein (ChREBP) is a key transcription factor that mediates the effects of glucose on glycolytic and lipogenic genes in the liver. We have previously reported that liver-specific inhibition of ChREBP prevents hepatic steatosis in ob/ob mice by specifically decreasing lipogenic rates in vivo. To better(More)
During the past two decades, O-GlcNAc modification of cytosolic and nuclear proteins has been intensively studied. Nevertheless, the function of this post-translational modification remains unclear. It has been recently speculated that O-GlcNAc could act as a protective signal against proteasomal degradation, both by modifying target substrates and/or by(More)
It is well-accepted that protein quality control (occurring either after protein synthesis or after cell damage) is mainly ensured by HSP, but the mechanism by which HSP decides whether the protein will be degraded or not is poorly understood. Within this framework, it has been hypothesized that O-GlcNAc, a cytosolic and nuclear-specific glycosylation whose(More)
O-GlcNAcylation is widespread within the cytosolic and nuclear compartments of cells. This post-translational modification is likely an indicator of good health since its intracellular level correlates with the availability of extracellular glucose. Apart from its status as a nutrient sensor, O-GlcNAcylation may also act as a stress sensor since it exerts(More)
Numerous works demonstrated that the dynamic O-GlcNAc glycosylation could protect against the proteasomal degradation by modifying the target proteins and the proteasome itself. Considering that Hsp70 is a crucial component in the quality control of protein conformation in the proteasomal pathway, we investigated the possibility that Hsp70 physically(More)
The short half-life protooncogene β-catenin acquires a remarkable stability in a large subset of cancers, mainly from mutations affecting its proteasomal degradation. In this sense, colorectal cancers (CRC) form a group of pathologies in which early steps of development are characterized by an aberrant expression of β-catenin and an uncontrolled(More)
There are several lines of evidence that the modification of proteins by cytosolic- and nuclear-specific O-linked N-acetylglucosamine (O-GlcNAc) glycosylation is closely related to neuropathologies, particularly Alzheimer's disease. Several neuronal proteins have been identified as being modified with O-GlcNAc; these proteins could form part of the(More)
Nuclear and cytoplasmic O-GlcNAc transferase (OGT) is a unique and universally expressed enzyme catalyzing O-GlcNAcylation of thousands of proteins. Although OGT interferes with many crucial intracellular processes, including cell cycle, only few studies have focused on elucidating the precise role of the glycosyltransferase during cell cycle entry. We(More)
Numerous recent works strengthen the idea that the nuclear and cytosolic-specific O-GlcNAc glycosylation protects cells against injuries. We have first investigated O-GlcNAc level and Hsp70-GlcNAc-binding activity (HGBA) behaviour after exposure of HeLa and HepG(2) cells to a wide variety of stresses. O-GlcNAc and HGBA responses were different according to(More)
Year 2004 marks the 20th anniversary of the discovery of O-linked N-acetylglucosamine (O-GlcNAc) by Gerald W. Hart. Despite interest for O-GlcNAc, the functions played by this single monosaccharide remain poorly understood, though numerous roles have been suggested, among which is the involvement of O-GlcNAc in the nuclear transport of cytosolic proteins.(More)