Learn More
The biosynthetic reaction scheme for the compatible solute mannosylglycerate in Rhodothermus marinus is proposed based on measurements of the relevant enzymatic activities in cell-free extracts and in vivo (13)C labeling experiments. The synthesis of mannosylglycerate proceeded via two alternative pathways; in one of them, GDP mannose was condensed with(More)
Cerebral capillary sequestration and blood-brain barrier (BBB) permeability to apolipoproteins E2 (apoE2), E3 (apoE3), and E4 (apoE4) and to their complexes with sA beta(1-40), a peptide homologous to the major form of soluble Alzheimer's amyloid beta, were studied in perfused guinea pig brain. Cerebrovascular uptake of three apoE isoforms was low, their(More)
The use of reverse transcription quantitative PCR technology to assess gene expression levels requires an accurate normalization of data in order to avoid misinterpretation of experimental results and erroneous analyses. Despite being the focus of several transcriptomics projects, oaks, and particularly cork oak (Quercus suber), have not been investigated(More)
Suitable internal control genes to normalize qPCR data from different stages of embryo development and germination were identified in two representative conifer species. Clonal propagation by somatic embryogenesis has a great application potentiality in conifers. Quantitative PCR (qPCR) is widely used for gene expression analysis during somatic(More)
It is during embryogenesis that the plant body plan is established and the meristems responsible for all post-embryonic growth are specified. The molecular mechanisms governing conifer embryogenesis are still largely unknown. Their elucidation may contribute valuable information to clarify if the distinct features of embryo development in angiosperms and(More)
Cork oak (Quercus suber) is one of the rare trees with the ability to produce cork, a material widely used to make wine bottle stoppers, flooring and insulation materials, among many other uses. The molecular mechanisms of cork formation are still poorly understood, in great part due to the difficulty in studying a species with a long life-cycle and for(More)
Xylem provides long-distance transport of water and nutrients as well as structural support in plants. The development of the xylem tissues is modulated by several internal signals. In the last decades, the bloom of genetic and genomic tools has led to increased understanding of the molecular mechanisms underlying the function of the traditional plant(More)
Cork oak (Quercus suber L.) is an evergreen tree species endemic to the western Mediterranean Basin with a major economical, social and ecological relevance, associated with cork extraction and exploitation. In the last years, cork oak stands have been facing a significant decline, which may be aggravated by the climate changes that are predicted to occur(More)
The differentiation of cork (phellem) cells from the phellogen (cork cambium) is a secondary growth process observed in the cork oak tree conferring a unique ability to produce a thick layer of cork. At present, the molecular regulators of phellem differentiation are unknown. The previously documented involvement of microRNAs (miRNAs) in the regulation of(More)
Background Acyltransferases are enzymes with an important role in the synthesis of both cutin and suberin which are part of the lipophilic barriers, such as epidermis and peri-derm that protect terrestrial plants against water loss and other external aggressions. During secondary growth in woody plants such as cork oak (Quercus suber L.), the epidermis is(More)