Learn More
The timing mechanisms responsible for terminating cell proliferation toward the end of development remain unclear. In the Drosophila CNS, individual progenitors called neuroblasts are known to express a series of transcription factors endowing daughter neurons with different temporal identities. Here we show that Castor and Seven-Up, members of this(More)
It is well established in species as diverse as insects and mammals that different neuronal and glial subtypes are born at distinct times during central nervous system development. In Drosophila, there is now compelling evidence that individual multipotent neuroblasts express a sequence of progenitor transcription factors which, in turn, regulates the(More)
Drosophila neuroblasts are similar to mammalian neural stem cells in that they self-renew and have the potential to generate many different types of neurons and glia. They have already proved useful for uncovering asymmetric division components and now look set to provide insights into how stem cell divisions are initiated and terminated during neural(More)
  • 1