Learn More
The timing mechanisms responsible for terminating cell proliferation toward the end of development remain unclear. In the Drosophila CNS, individual progenitors called neuroblasts are known to express a series of transcription factors endowing daughter neurons with different temporal identities. Here we show that Castor and Seven-Up, members of this(More)
Drosophila neuroblasts are similar to mammalian neural stem cells in that they self-renew and have the potential to generate many different types of neurons and glia. They have already proved useful for uncovering asymmetric division components and now look set to provide insights into how stem cell divisions are initiated and terminated during neural(More)
In Drosophila, the Trithorax-group (trxG) and Polycomb-group (PcG) proteins interact with chromosomal elements, termed Cellular Memory Modules (CMMs). By modifying chromatin, this ensures a stable heritable maintenance of the transcriptional state of developmental regulators, like the homeotic genes, that is defined embryonically. We asked whether such CMMs(More)
Systemic signals provided by nutrients and hormones are known to coordinate the growth and proliferation of different organs during development. However, within the brain, it is unclear how these signals influence neural progenitor divisions and neuronal diversity. Here, in the Drosophila visual system, we identify two developmental phases with different(More)
During the regeneration of Drosophila imaginal discs, cellular identities can switch fate in a process known as transdetermination. For leg-to-wing transdetermination, the underlying mechanism involves morphogens such as Wingless that, when activated outside their normal context, induce ectopic expression of the wing-specific selector gene vestigial.(More)
It is well established in species as diverse as insects and mammals that different neuronal and glial subtypes are born at distinct times during central nervous system development. In Drosophila, there is now compelling evidence that individual multipotent neuroblasts express a sequence of progenitor transcription factors which, in turn, regulates the(More)
The mechanisms underlying the temporal specification of neural stem cells (NSCs), a process by which a single progenitor can generate different types of neurons and glia in an invariant order, are still poorly understood in mammals. However, in the past decade, work on Drosophila NSCs, called neuroblasts, has identified a series of sequentially expressed(More)
Pediatric neural tumors are often initiated during early development and can undergo very rapid transformation. However, the molecular basis of this early malignant susceptibility remains unknown. During Drosophila development, neural stem cells (NSCs) divide asymmetrically and generate intermediate progenitors that rapidly differentiate in neurons. Upon(More)
While the growth of the developing brain is known to be well-protected compared to other organs in the face of nutrient restriction (NR), careful analysis has revealed a range of structural alterations and long-term neurological defects. Yet, despite intensive studies, little is known about the basic principles that govern brain development under nutrient(More)
  • 1