Learn More
The timing mechanisms responsible for terminating cell proliferation toward the end of development remain unclear. In the Drosophila CNS, individual progenitors called neuroblasts are known to express a series of transcription factors endowing daughter neurons with different temporal identities. Here we show that Castor and Seven-Up, members of this(More)
The chromatin protein Polycomb (PC) is necessary for keeping homeotic genes repressed in a permanent and heritable manner. PC is part of a large multimeric complex (PcG proteins) involved in generating silenced chromatin domains at target genes, thus preventing their inappropriate expression. In order to assess the intranuclear distribution of PC during(More)
During the regeneration of Drosophila imaginal discs, cellular identities can switch fate in a process known as transdetermination. For leg-to-wing transdetermination, the underlying mechanism involves morphogens such as Wingless that, when activated outside their normal context, induce ectopic expression of the wing-specific selector gene vestigial.(More)
In Drosophila, the Trithorax-group (trxG) and Polycomb-group (PcG) proteins interact with chromosomal elements, termed Cellular Memory Modules (CMMs). By modifying chromatin, this ensures a stable heritable maintenance of the transcriptional state of developmental regulators, like the homeotic genes, that is defined embryonically. We asked whether such CMMs(More)
BACKGROUND Local production of therapeutic proteins, e.g. for cancer treatments, is based on gene therapy approaches and requires tight spatial and temporal control of gene expression. Here we demonstrate the use of local hyperthermia of varying intensity and duration to control the expression of a transgene under control of the thermoinducible hsp70 (heat(More)
It is well established in species as diverse as insects and mammals that different neuronal and glial subtypes are born at distinct times during central nervous system development. In Drosophila, there is now compelling evidence that individual multipotent neuroblasts express a sequence of progenitor transcription factors which, in turn, regulates the(More)
Drosophila neuroblasts are similar to mammalian neural stem cells in that they self-renew and have the potential to generate many different types of neurons and glia. They have already proved useful for uncovering asymmetric division components and now look set to provide insights into how stem cell divisions are initiated and terminated during neural(More)
BACKGROUND Among the techniques used to induce and control gene expression, a non-invasive, physical approach based on local heat in combination with a heat-sensitive promoter represents a promising alternative but requires accurate temperature control in vivo. MRI-guided focused ultrasound (MRI-FUS) with real-time feedback control allows automatic(More)
As transcription programs become stabilized in fate-determined cells by progressive patterning of chromatin structures, cells lose their plasticity and the ability to freely modify their identity in response to changing developmental cues. By contrast, stem cells maintain this flexibility, enabling them to embark on different determination pathways.(More)
  • 1