Cédric J. Sallaberry

Learn More
Sampling-based methods for uncertainty and sensitivity analysis are reviewed. The following topics are considered: (i) definition of probability distributions to characterize epistemic uncertainty in analysis inputs, (ii) generation of samples from uncertain analysis inputs, (iii) propagation of sampled inputs through an analysis, (iv) presentation of(More)
The analysis of many physical and engineering problems involves running complex computational models (simulation models, computer codes). With problems of this type, it is important to understand the relationships between the input variables (whose values are often imprecisely known) and the output. The goal of sensitivity analysis (SA) is to study this(More)
A procedure for extending the size of a Latin hypercube sample (LHS) with rank correlated variables is described and illustrated. The extension procedure starts with an LHS of size m and associated rank correlation matrix C and constructs a new LHS of size 2m that contains the elements of the original LHS and has a rank correlation matrix that is close to(More)