Learn More
Several cellular molecules have been identified as putative receptors for Hepatitis C virus (HCV): CD81 tetraspanin, scavenger receptor class B type I (SR-BI), mannose-binding lectins DC-SIGN and L-SIGN, low-density lipoprotein receptor, heparan sulphate proteoglycans and the asialoglycoprotein receptor. Due to difficulties in propagating HCV in cell(More)
Retroviruses are an important group of pathogens that cause a variety of diseases in humans and animals. Four human retroviruses are currently known, including human immunodeficiency virus type 1, which causes AIDS, and human T-lymphotropic virus type 1, which causes cancer and inflammatory disease. For many years, there have been sporadic reports of(More)
BACKGROUND Prion-based diseases are incurable transmissible neurodegenerative disorders affecting animals and humans. METHODOLOGY/PRINCIPAL FINDINGS Here we report the discovery of the in vivo antiprion activity of Guanabenz (GA), an agonist of alpha2-adrenergic receptors routinely used in human medicine as an antihypertensive drug. We isolated GA in a(More)
BACKGROUND 6-Aminophenanthridine (6AP) and Guanabenz (GA, a drug currently in use for the treatment of hypertension) were isolated as antiprion drugs using a yeast-based assay. These structurally unrelated molecules are also active against mammalian prion in several cell-based assays and in vivo in a mouse model for prion-based diseases. (More)
In addition to its role in protein synthesis, which involves a peptidyl transferase activity, the ribosome has also been described to be able to assist protein folding, at least in vitro, as presented in a Research Highlight (Das, et al., Biotechnol. J. 2008). This in vitro-described ribosome-borne protein folding activity (RPFA) is yet poorly characterized(More)
Using a yeast-based assay, a previously unsuspected antiprion activity was found for imiquimod (IQ), a potent Toll-like receptor 7 (TLR7) agonist already used for clinical applications. The antiprion activity of IQ was first detected against yeast prions [PSI (+) ] and [URE3], and then against mammalian prion both ex vivo in a cell-based assay and in vivo(More)
Mitochondrial diseases are systemic, prevalent and often fatal; yet treatments remain scarce. Identifying molecular intervention points that can be therapeutically targeted remains a major challenge, which we confronted via a screening assay we developed. Using yeast models of mitochondrial ATP synthase disorders, we screened a drug repurposing library, and(More)
Oculopharyngeal muscular dystrophy (OPMD) is an adult-onset syndrome characterized by progressive degeneration of specific muscles. OPMD is caused by extension of a polyalanine tract in poly(A) binding protein nuclear 1 (PABPN1). Insoluble nuclear inclusions form in diseased muscles. We have generated a Drosophila model of OPMD that recapitulates the(More)
Guanabenz (GA) is an orally active α2-adrenergic agonist that has been used for many years for the treatment of hypertension. We recently described that GA is also active against both yeast and mammalian prions in an α2-adrenergic receptor-independent manner. These data suggest that this side-activity of GA could be explored for the treatment of prion-based(More)