Learn More
Several animal models of vestibular deficits that mimic the human pathology phenotype have previously been developed to correlate the degree of vestibular injury to cognate vestibular deficits in a time-dependent manner. Sodium arsanilate is one of the most commonly used substances for chemical vestibular lesioning, but it is not well described in the(More)
The aim of this study was to investigate whether an altered gravitational environment affected the phenotype of vestibular hair cells during maturation. We developed, using an automated incubator, a 3D culture of utricles from newborn rats. These cultures were subjected to weightlessness for 1 or 3 days, and then compared with control cultures developed in(More)
Trimetazidine (1[2,3,4-trimethoxy-benzyl] piperazine, 2 HCl) is an anti-ischemic agent frequently administered as a prophylactic treatment for episodes of angina pectoris and chorioretinal disturbances. It is also employed as a symptomatic treatment of vertigo but its mechanism of action is yet to be defined. Using Fura-2 fluorescence photometry and(More)
In mammals, the permanence of hearing loss is due mostly to the incapacity of the cochlea to replace lost mechano-receptor cells (i.e., hair cells [HCs]). The generation of new HCs from a renewable source of progenitors is a principal requirement for developing a cell therapy within this sensory organ. A subset of stem cells, termed side population (SP),(More)
In a previous study, we observed spontaneous restoration of vestibular function in young adult rodents following excitotoxic injury of the neuronal connections within vestibular endorgans. The functional restoration was supported by a repair of synaptic contacts between hair cells and primary vestibular neurons. This process was observed in 2/3 of the(More)
BACKGROUND AND PURPOSE Betahistine, the main histamine drug prescribed to treat vestibular disorders, is a histamine H(3) receptor antagonist. Here, we explored the potential for modulation of the most recently cloned histamine receptor (H(4) receptor) to influence vestibular system function, using a selective H(4) receptor antagonist JNJ 7777120 and the(More)
The vestibule is the end organ devoted to sensing of head movements in space. To function properly, its mechano-receptors require the presence of a unique apical extracellular medium, the endolymph. Numerous studies have elucidated the mechanisms involved in the production and homeostasis of this unique medium and the responses of sensory cells to(More)
Infrared laser irradiation has been established as an appropriate stimulus for primary sensory neurons under conditions where sensory receptor cells are impaired or lost. Yet, development of clinical applications has been impeded by lack of information about the molecular mechanisms underlying the laser-induced neural response. Here, we directly address(More)
The etiology of benign paroxysmal positional vertigo (BPPV) remains obscure in many cases and women are affected more often than men. A recent prospective study, performed in women >50 years of age suffering from recurrent BPPV, showed associated osteopenia or osteoporosis in a large percentage of these patients. These results suggested the possible(More)
BACKGROUND AND OBJECTIVE The optical stimulation of neurons from pulsed infrared lasers has appeared over the last years as an alternative to classical electric stimulations based on conventional electrodes. Laser stimulation could provide a better spatial selectivity allowing single-cell stimulation without prerequisite contact. In this work we present(More)