Learn More
The cell division cycle involves nuclear and cytoplasmic events, namely organelle multiplication and distribution between the daughter cells. Until now, plastid and plant cell division have been considered as independent processes because they can be uncoupled. Here, down-regulation of AtCDT1a and AtCDT1b, members of the prereplication complex, is shown to(More)
BACKGROUND Although it is a crucial cellular process required for both normal development and to face stress conditions, the control of programmed cell death in plants is not fully understood. We previously reported the isolation of ATXR5 and ATXR6, two PCNA-binding proteins that could be involved in the regulation of cell cycle or cell death. A yeast(More)
* Minichromosome maintenance (MCM) proteins are subunits of the pre-replication complex that probably function as DNA helicases during the S phase of the cell cycle. Here, we investigated the function of AtMCM2 in Arabidopsis. * To gain an insight into the function of AtMCM2, we combined loss- and gain-of-function approaches. To this end, we analysed two(More)
Plastids have evolved from an endosymbiosis between a cyanobacterial symbiont and a eukaryotic host cell. Their division is mediated both by proteins of the host cell and conserved bacterial division proteins. Here, we identified a new component of the plastid division machinery, Arabidopsis thaliana SulA. Disruption of its cyanobacterial homolog (SSulA) in(More)
Organelle gene expression is characterized by nucleus-encoded trans-acting factors that control posttranscriptional steps in a gene-specific manner. As a typical example, in Chlamydomonas reinhardtii, expression of the chloroplast petA gene encoding cytochrome f, a major subunit of the cytochrome b(6)f complex, depends on MCA1 and TCA1, required for the(More)
SWI/SNF complexes mediate ATP-dependent chromatin remodeling to regulate gene expression. Many components of these complexes are evolutionarily conserved, and several subunits of Arabidopsis thaliana SWI/SNF complexes are involved in the control of flowering, a process that depends on the floral repressor FLOWERING LOCUS C (FLC). BAF60 is a SWI/SNF subunit,(More)
Chromatin architecture determines transcriptional accessibility to DNA and consequently gene expression levels in response to developmental and environmental stimuli. Recently, chromatin remodelers such as SWI/SNF complexes have been recognized as key regulators of chromatin architecture. To gain insight into the function of these complexes during root(More)
A salient feature of organelle gene expression is the requirement for nucleus-encoded factors that act posttranscriptionally in a gene-specific manner. A central issue is to understand whether these factors are merely constitutive or have a regulatory function. In the unicellular alga Chlamydomonas reinhardtii, expression of the chloroplast petA(More)
The proliferating cell nuclear antigen (PCNA) functions as a sliding clamp for DNA polymerase, and is thus a key actor in DNA replication. It is also involved in DNA repair, maintenance of heterochromatic regions throughout replication, cell cycle regulation and programmed cell death. Identification of PCNA partners is therefore necessary for understanding(More)
The efficient repair of double-strand breaks (DSBs) in genomic DNA is crucial for the survival of all organisms. Mnd1 is suggested to promote the strand invasion step during meiotic recombination. We used a forward genetics approach, through the search for mutants, to characterize the Arabidopsis homologue of Mnd1. Atmnd1 null mutants exhibit normal(More)