Learn More
A mitochondrial protein called uncoupling protein (UCP1) plays an important role in generating heat and burning calories by creating a pathway that allows dissipation of the proton electrochemical gradient across the inner mitochondrial membrane in brown adipose tissue, without coupling to any other energy-consuming process. This pathway has been implicated(More)
BACKGROUND Most methods available to predict protein epitopes are sequence based. There is a need for methods using 3D information for prediction of discontinuous epitopes and derived immunogenic peptides. RESULTS PEPOP uses the 3D coordinates of a protein both to predict clusters of surface accessible segments that might correspond to epitopes and to(More)
We report here the cloning and functional analysis of a novel homologue of the mitochondrial carriers predominantly expressed in the central nervous system and referred to as BMCP1 (brain mitochondrial carrier protein-1). The predicted amino acid sequence of this novel mitochondrial carrier indicates a level of identity of 39, 31, or 30%, toward the(More)
Human and mouse UCP2 genes were cloned and sequenced. Transcriptional start sites were identified using primer extension analysis. The transcription unit of UCP2 gene is made of 2 untranslated exons followed by 6 exons encoding UCP2. In vitro translation analysis demonstrated that an open-reading-frame for a putative peptide of 36 residues present in exon 2(More)
Transgenic mice were generated with a transgene containing the 211-base pair (bp) enhancer and 0.4 kilobase pairs of 5'-flanking DNA of the uncoupling protein (ucp) gene. Expression of this transgene was restricted to brown adipose tissue and was inducible by cold exposure or treatment of transgenic mice by norepinephrine, retinoic acid (RA), or CL-316,243(More)
In mammalian brown adipose tissue, thermogenesis is explained by uncoupling mitochondrial respiration from ATP synthesis. Uncoupling protein-1 (UCP1) is responsible for this uncoupled state, because it allows proton re-entry into the matrix and thus dissipates the proton gradient generated by the respiratory chain. Proton transport by UCP1 is regulated(More)
The activity of the brown fat uncoupling protein (UCP1) is regulated by purine nucleotides and fatty acids. Although the inhibition by nucleotides is well established, the activation by fatty acids is still controversial. It has been reported that the ADP/ATP carrier, and possibly other members of the mitochondrial carrier family, mediate fatty acid(More)
The mechanisms underlying thermogenesis in liver are not well understood. They may involve proteins related to the mitochondrial uncoupling protein (UCP1) of brown adipocytes. In this paper, it is demonstrated that UCP1 is not expressed in any liver cell type of rat while UCP2, a recently cloned homologue of UCP1, is expressed at a very high level in(More)
The transport properties of the uncoupling protein (UCP) from brown adipose tissue have been studied in mutants where Cys304 has been replaced by either Gly, Ala, Ser, Thr, Ile or Trp. This position is only two residues away from the C-terminus of the protein, a region that faces the cytosolic side of the mitochondrial inner membrane. Mutant proteins have(More)