Cécile Bouton

Learn More
Reactive oxygen species and nitric oxide (NO) are capable of both mediating redox-sensitive signal transduction and eliciting cell injury. The interplay between these messengers is quite complex, and intersection of their signaling pathways as well as regulation of their fluxes requires tight control. In this regard, peroxiredoxins (Prxs), a recently(More)
Macrophages are key cells of the immune system. Immunologically activated macrophages are known to release a cocktail of reactive oxygen and nitrogen species. In this work, RAW 264.7 macrophages were activated by interferon-gamma and lipopolysaccharide, and the reactive mixture released by single cells was analyzed, in real time, by amperometry at(More)
Peroxiredoxins (PRXs) are thiol peroxidases associated with many cellular functions including proliferation, cell cycle, apoptosis, and differentiation. There is also increasing evidence that these ubiquitous antioxidant enzymes control H(2)O(2) signaling in eukaryotes. Here, we provide evidence that the LPS/TLR4 and the Th1 cytokine IFN-gamma pathways(More)
1 Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), CNRS/INSERM/Université Louis Pasteur, 67404 Illkirch cedex, CU de Strasbourg, France. 2 Institut de Chimie des Substances Naturelles (ICSN), CNRS, avenue de la Terrasse, 91190 Gif-sur-Yvette, France. 3 Center for Molecular and Mitochondrial Medicine and Genetics (MAMMAG), University(More)
Iron regulatory proteins (IRP1 and IRP2) are two cytoplasmic RNA-binding proteins that control iron metabolism in mammalian cells. Both IRPs bind to specific sequences called iron-responsive elements (IREs) located in the 3' or 5' untranslated regions of several mRNAs, in particular mRNA encoding ferritin and transferrin receptor. In this study, we followed(More)
The iron regulatory proteins (IRPs) are an example of different proteins regulating the same metabolic process, iron uptake and metabolism. IRP1 is an iron-sulfur cluster-containing protein that can be converted from a cytosolic aconitase to an RNA binding posttranscriptional regulator in response to nitric oxide (NO). IRP2 lacks aconitase activity and its(More)
In eukaryotes, mitochondrial iron-sulfur cluster (ISC), export and cytosolic iron-sulfur cluster assembly (CIA) machineries carry out biogenesis of iron-sulfur (Fe-S) clusters, which are critical for multiple essential cellular pathways. However, little is known about their export out of mitochondria. Here we show that Fe-S assembly of mitoNEET, the first(More)
In prokaryotes and yeast, the general mechanism of biogenesis of iron-sulfur (Fe-S) clusters involves activities of several proteins among which IscS and Nfs1p provide, through cysteine desulfuration, elemental sulfide for Fe-S core formation. Although these proteins have been well characterized, the role of their mammalian homolog in Fe-S cluster(More)
Iron regulatory protein 1 (IRP1) is a redox-sensitive protein which exists in two active forms in the cytosol of eukaryotic cells. Holo-IRP1 containing a [4Fe-4S] cluster exhibits aconitase activity which catalyzes the isomerization of citrate and isocitrate. The cluster-free protein (apo-IRP1) is a transregulator binding to specific mRNA, and thus(More)
In this study we examined the gene expression pattern of *NO-dependent genes in U937 and Mono Mac 6 monocytes exposed to the synthetic NO-donor DPTA-NO using microarray technology. cDNA microarray data were validated by Northern blot analysis and quantitative real-time PCR. This approach allowed the identification of 17 *NO-sensitive genes that showed at(More)