Cécil Czerkinsky

Learn More
Vibrio cholerae is a globally important pathogen that is endemic in many areas of the world and causes 3-5 million reported cases of cholera every year. Historically, there have been seven acknowledged cholera pandemics; recent outbreaks in Zimbabwe and Haiti are included in the seventh and ongoing pandemic. Only isolates in serogroup O1 (consisting of two(More)
There is currently great interest in developing mucosal vaccines against a variety of microbial pathogens. Mucosally induced tolerance also seems to be a promising form of immunomodulation for treating certain autoimmune diseases and allergies. Here we review the properties of the mucosal immune system and discuss advances in the development of mucosal(More)
A solid-phase enzyme-linked immunosorbent assay (ELISPOT) is described for enumeration of cells secreting specific antibody. Spleen cells from immunized mice are incubated in antigen-coated polystyrene plates. After removal of the cells, bound antibodies are demonstrated by means of an immunoenzyme procedure in which enzyme-substrate reactions are performed(More)
We assessed whether the sublingual (s.l.) route would be an effective means of delivering vaccines against influenza virus in mice by using either formalin-inactivated or live influenza A/PR/8 virus (H1N1). Sublingual administration of inactivated influenza virus given on two occasions induced both systemic and mucosal antibody responses and conferred(More)
Cholera Outbreaks Caused by an Altered Vibrio cholerae O1 El Tor Biotype Strain Producing Classical Cholera Toxin B in Vietnam in 2007 to 2008 Binh Minh Nguyen, Je Hee Lee, Ngo Tuan Cuong, Seon Young Choi, Nguyen Tran Hien, Dang Duc Anh, Hye Ri Lee, M. Ansaruzzaman, Hubert P. Endtz, Jongsik Chun, Anna Lena Lopez, Cecil Czerkinsky, John D. Clemens, and Dong(More)
The potential of sublingual (s.l.) delivery of vaccine was examined in mice. We show the existence of a dense network of dendritic cells (DCs) in the s.l. epithelium and a rapid and transient increase in the frequency of s.l. DCs after topical application of cholera toxin (CT) adjuvant under the tongue. S.l. immunization with ovalbumin and CT induced(More)
Our previous studies demonstrated the potential of the sublingual (s.l.) route for delivering vaccines capable of inducing mucosal as well as systemic immune responses. Those findings prompted us to attempt to identify possible inductive mechanism of s.l. vaccination for immune responses. Within 2 h after s.l. administration with cholera toxin (CT),(More)
Mucosal administration of Ag conjugated to cholera toxin B subunit (CTB) can efficiently induce peripheral immunologic tolerance, so-called oral tolerance, associated with development of Foxp3(+)CD25(+)CD4(+) regulatory T (Treg) cells. Using an established sublingual tolerization regimen with Ag(OVA)/CTB conjugate, wherein CTB mediates Ag uptake and(More)
Expression of the adhesion molecules CD44, L-selectin (CD62L), and integrin alpha 4 beta 7 by antibody-secreting cells (ASC) was examined in human volunteers after oral, rectal, intranasal, or systemic immunization with cholera toxin B subunit. Almost all blood ASC, irrespective of immunization route, isotype (IgG and IgA), and immunogen, expressed CD44. On(More)
The efficacy and mechanism of immunosuppression against experimental autoimmune encephalomyelitis (EAE) by oral low-dose administration of myelin basic protein (MBP) conjugated to cholera toxin B subunit (CTB) were investigated in Lewis rats immunized with MBP together with complete Freund's adjuvant 4 days before the start of treatment. Oral treatment with(More)