Byung J. Jung

Learn More
We designed a new naphthalenetetracarboxylic diimide (NTCDI) semiconductor molecule with long fluoroalkylbenzyl side chains. The side chains, 1.2 nm long, not only aid in self-assembly and kinetically stabilize injected electrons but also act as part of the gate dielectric in field-effect transistors. On Si substrates coated only with the 2 nm thick native(More)
Chemiresistors and sensitive OFETs have been substantially developed as cheap, scalable, and versatile sensing platforms. While new materials are expanding OFET sensing capabilities, the device architectures have changed little. Here we report higher order logic circuits utilizing OFETs sensitive to amine vapors. The circuits depend on the synergistic(More)
The operation of organic diodes in solar cells and light-emitting displays strongly depends on the properties of the interfaces between hole- and electron-carrying organic semiconductors. Such interfaces are difficult to characterize, as they are usually buried under the surface or exist as an irregular "bulk heterojunction." Using a unique fluorinated(More)
a Laboratory for Physical Sciences, College Park, MD 20742, USA Center for Nanophysics and Advanced Materials, University of Maryland, College Park, MD 20742, USA Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD 21218,(More)
Four ladder-type oligo-p-phenylene containing donor-acceptor copolymers were designed, synthesized, and characterized. The ladder-type oligo-p-phenylene was used as an electron donor unit in these copolymers to provide a deeper highest occupied molecular orbital (HOMO) level for obtaining polymer solar cells with a higher open-circuit voltage, while(More)
We have synthesized an anthracene-based conjugated polymer, poly[(9,10-bis(oct-1-ynyl)anthracene)-alt-(5,6-bis(octyloxy)-4,7-bis(thiophen-2-yl)benzo-[c][1,2,5]-thiadiazole)] (PANTBT), for application in organic photovoltaic devices. It exhibited a number average molecular weight of 14,300 g/mol and was fairly soluble in chlorinated organic solvents due to(More)
We report bottom contact organic field-effect transistors (OFETs) with various surface treatments based on n-channel materials, specifically, 1,4,5,8-naphthalene-teracarboxylic diimides (NTCDIs) with three different fluorinated N-substituents, systematically studied with a particular emphasis on the interplay between the morphology of the organic(More)
For the diagnosis and prevention of diseases, a range of strategies for the detection of pathogens have been developed. In this study, we synthesized the rolling circle amplification (RCA)-based biosensor that enables detection of pathogen DNA in two analytical modes. Only in the presence of the target DNA, the template DNA can be continuously polymerized(More)
A new series of heterocyclic oligomers based on the 1,3,4-oxadiazole ring were synthesized. Other electron-deficient cores (fluorenone and fumaronitrile) were introduced to investigate the oligomers as n-channel materials. The physical properties, thin film morphologies, and field-effect transistor characteristics of the oligomers were evaluated. Thin films(More)
  • 1