Byoung-il Bae

Learn More
We present evidence for a specific role of p53 in the mitochondria-associated cellular dysfunction and behavioral abnormalities of Huntington's disease (HD). Mutant huntingtin (mHtt) with expanded polyglutamine (polyQ) binds to p53 and upregulates levels of nuclear p53 as well as p53 transcriptional activity in neuronal cultures. The augmentation is(More)
Besides its role in glycolysis, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) initiates a cell death cascade. Diverse apoptotic stimuli activate inducible nitric oxide synthase (iNOS) or neuronal NOS (nNOS), with the generated nitric oxide (NO) S-nitrosylating GAPDH, abolishing its catalytic activity and conferring on it the ability to bind to Siah1, an(More)
Diphosphoinositol pentakisphosphate (InsP7) and bis-diphosphoinositol tetrakisphosphate contain pyrophosphate bonds. InsP7 is formed from inositol hexakisphosphate (InsP6) by a family of three inositol hexakisphosphate kinases (InsP6K). In this study we establish one of the InsP6Ks, InsP6K2, as a physiologic mediator of cell death. Overexpression of(More)
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) participates in a cell death cascade wherein a variety of stimuli activate nitric oxide (NO) synthases with NO nitrosylating GAPDH, conferring on it the ability to bind to Siah, an E3-ubiquitin-ligase, whose nuclear localization signal enables the GAPDH/Siah protein complex to translocate to the nucleus where(More)
The development and function of our brain are governed by a genetic blueprint, which reflects dynamic changes over the history of evolution. Recent progress in genetics and genomics, facilitated by next-generation sequencing and single-cell sorting, has identified numerous genomic loci that are associated with a neuroanatomical or neurobehavioral phenotype.(More)
The human neocortex has numerous specialized functional areas whose formation is poorly understood. Here, we describe a 15-base pair deletion mutation in a regulatory element of GPR56 that selectively disrupts human cortex surrounding the Sylvian fissure bilaterally including "Broca's area," the primary language area, by disrupting regional GPR56 expression(More)
The pathophysiology of Huntington's disease reflects actions of mutant Huntingtin (Htt) (mHtt) protein with polyglutamine repeats, whose N-terminal fragment translocates to the nucleus to elicit neurotoxicity. We establish that the nuclear translocation and associated cytotoxicity of mHtt reflect a ternary complex of mHtt with GAPDH and Siah1, a(More)
Mutations in several genes encoding centrosomal proteins dramatically decrease the size of the human brain. We show that Aspm (abnormal spindle-like, microcephaly-associated) and Wdr62 (WD repeat-containing protein 62) interact genetically to control brain size, with mice lacking Wdr62, Aspm, or both showing gene dose-related centriole duplication defects(More)
The class of adhesion G protein-coupled receptors (aGPCRs), with 33 human homologs, is the second largest family of GPCRs. In addition to a seven-transmembrane α-helix-a structural feature of all GPCRs-the class of aGPCRs is characterized by the presence of a large N-terminal extracellular region. In addition, all aGPCRs but one (GPR123) contain a GPCR(More)
Comparative analyses have identified genomic regions potentially involved in human evolution but do not directly assess function. Human accelerated regions (HARs) represent conserved genomic loci with elevated divergence in humans. If some HARs regulate human-specific social and behavioral traits, then mutations would likely impact cognitive and social(More)