Learn More
A hallmark of Parkinson's disease (PD) is the preferential loss of substantia nigra dopamine neurons. Here, we identify a new parkin interacting substrate, PARIS (ZNF746), whose levels are regulated by the ubiquitin proteasome system via binding to and ubiquitination by the E3 ubiquitin ligase, parkin. PARIS is a KRAB and zinc finger protein that(More)
c-Abl is activated in the brain of Parkinson's disease (PD) patients and in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mice where it inhibits parkin through tyrosine phosphorylation leading to the accumulation of parkin substrates, and neuronal cell death. In the present study, we evaluated the in vivo efficacy of nilotinib, a brain(More)
Mutations in PARK2/Parkin, which encodes a ubiquitin E3 ligase, cause autosomal recessive Parkinson disease (PD). Here we show that the nonreceptor tyrosine kinase c-Abl phosphorylates tyrosine 143 of parkin, inhibiting parkin's ubiquitin E3 ligase activity and protective function. c-Abl is activated by dopaminergic stress and by dopaminergic neurotoxins,(More)
The defining feature of Parkinson's disease is a progressive and selective demise of dopaminergic neurons. A recent report on Parkinson's disease animal model demonstrates that poly (ADP-ribose) (PAR) dependent cell death, also named parthanatos, is accountable for selective dopaminergic neuronal loss. Parthanatos is a programmed necrotic cell death,(More)
AIMS The opioid antagonist naltrexone may reduce ethanol reward, but the underlying neurochemical mechanisms has yet to be clarified. The afferent projections to the nucleus accumbens from the ventral tegmental area (VTA) provide a potential substrate by which endogenous opioids may modulate the dopaminergic rewarding effects of ethanol. We assessed mRNA(More)
Swedish double mutation (KM670/671NL) of amyloid precursor protein (Swe-APP), a prevailing cause of familial Alzheimer's disease (FAD), is known to increase in Abeta production both in vitro and in vivo, but its underlying molecular basis leading to Alzheimer's disease (AD) pathogenesis remains to be elucidated, especially for the early phase of disease. We(More)
Ubiquitin mediated protein degradation is crucial for regulation of cell signaling and protein quality control. Poly(ADP-ribose) (PAR) is a cell-signaling molecule that mediates changes in protein function through binding at PAR binding sites. Here we characterize the PAR binding protein, Iduna, and show that it is a PAR-dependent ubiquitin E3 ligase.(More)
Parkinson's disease (PD) is a complex genetic disorder that is associated with environmental risk factors and aging. Vertebrate genetic models, especially mice, have aided the study of autosomal-dominant and autosomal-recessive PD. Mice are capable of showing a broad range of phenotypes and, coupled with their conserved genetic and anatomical structures,(More)
The defining pathogenic feature of Parkinson's disease is the age-dependent loss of dopaminergic neurons. Mutations and inactivation of parkin, an ubiquitin E3 ligase, induce Parkinson's disease through accumulation of pathogenic substrates. We found that transgenic overexpression of a parkin substrate, aminoacyl-tRNA synthetase complex interacting(More)
The use of water-soluble, functionalized quantum dots (QDs) that are highly stable against oxidation for biological and biomedical applications is currently one of the fastest growing fields of nanotechnology. Polymer-based nanoparticles are now widely used for drug delivery and targeted therapy. We modified the surface of near Infrared QDs by the solid(More)