Byong-Gon Park

Learn More
We tested divalent metals including Cu2+, Pb2+, and Zn2+ to determine their pharmacological profiles for blockade of cloned T-type Ca2+ channels (alpha1G, alpha1 H, and alpha1I). Effects of the metals were also evaluated for native low and high voltage-activated Ca2+ channels in rat sympathetic pelvic neurons. Cu2+ and Zn2+ blocked three T-type channel(More)
Among autonomic neurons, sympathetic neurons of the major pelvic ganglia (MPG) are unique by expressing low-voltage-activated T-type Ca2+ channels. To date, the T-type Ca2+ channels have been poorly characterized, although they are believed to be potentially important for functions of the MPG neurons. In the present study, thus we investigated(More)
Ulcerative colitis is an inflammatory bowel disease (IBD) characterized by recurrent episodes of colonic inflammation and tissue degeneration in human or animal models. The contractile force generated by the smooth muscle is significantly attenuated, resulting in altered motility leading to diarrhea or constipation in IBD. The aim of this study is to(More)
Although nerve injury is known to up- and down-regulate some metabotropic receptors in vagal afferent neurons of the nodose ganglia (NG), the functional significance has not been elucidated. In the present study, thus, we examined whether nerve injury affected receptor-mediated Ca2+ channel modulation in the NG neurons. In this regard, unilateral vagotomy(More)
Jeong. Identification of T-type ␣1H Ca 2ϩ channels (Ca v 3.2) in major pelvic ganglion neurons. Among autonomic neurons, sympathetic neu-rons of the major pelvic ganglia (MPG) are unique by expressing low-voltage–activated T-type Ca 2ϩ channels. To date, the T-type Ca 2ϩ channels have been poorly characterized, although they are believed to be potentially(More)
Pelvic ganglia (PG) play critical roles in relaying sympathetic and parasympathetic information from the spinal cord to the penile vasculature and, controlling the penile reflex. Animal studies have shown that androgen deprivation by castration causes erectile dysfunction (ED). Until now, however, neural mechanisms underlying castration-induced ED remain(More)
  • 1