Burkhard Seif

  • Citations Per Year
Learn More
A semiclassical approach to the universal ergodic spectral statistics in quantum star graphs is presented for all known ten symmetry classes of quantum systems. The approach is based on periodic orbit theory, the exact semiclassical trace formula for star graphs, and on diagrammatic techniques. The appropriate spectral form factors are calculated up to one(More)
The symmetry classification of complex quantum systems has recently been extended beyond the Wigner-Dyson classes. Several of the novel symmetry classes can be discussed naturally in the context of superconducting-normal hybrid systems such as Andreev billiards and graphs. In this paper, we give a semiclassical interpretation of their universal spectral(More)
In a series of two papers we investigate the universal spectral statistics of chaotic quantum systems in the ten known symmetry classes of quantum mechanics. In this first paper we focus on the construction of appropriate ensembles of star graphs in the ten symmetry classes. A generalization of the Bohigas-Giannoni-Schmit conjecture is given that covers all(More)
We use the graded eigenvalue method, a variant of the supersymmetry technique, to compute the universal spectral correlations of the QCD Dirac operator in the presence of massive dynamical quarks. The calculation is done for the chiral Gaussian unitary ensemble of random matrix theory with an arbitrary Hermitian matrix added to the Dirac matrix. This case(More)
  • 1