Budhika G Mendis

Learn More
A Bloch wave model based on perturbation theory is used to analyse high-angle annular dark-field (HAADF) imaging of a substitutional and interstitial W atom in [111]-oriented body-centred-cubic Fe. For the substitutional atom the 1s Bloch state is scattered to high angles thereby producing HAADF dopant atom contrast. Intraband scattering of the 1s state is(More)
In high-resolution electron microscopy (HREM), dislocation core structures are examined by tilting the dislocation end-on along the appropriate zone axis. For end-on screw dislocations diffraction contrast is largely due to surface relaxation in the form of the Eshelby twist. In this paper, simulated, many-beam images of end-on, 1/2<111> Mo screw(More)
A method for extracting core and shell spectra from core-shell particles with varying core to shell volume fractions is described. The method extracts the information from a single EELS spectrum image of the particle. The distribution of O and N was correctly reproduced for a nanoparticle with a TiN core and Ti-oxide shell. In addition, the O distribution(More)
A Bloch-wave model of dopant-atom scattering is developed using perturbation theory for parallel illumination in a transmission electron microscope. Dopant-atom scattering causes a change in the Bloch-wave excitations, with transitions from one Bloch state to another being governed by the amplitudes of the Bloch states at the dopant-atom position. The(More)
Silver nanoparticles (AgNPS) are an important model system for studying potential environmental risks posed by the use of nanomaterials. So far there is no consensus as to whether toxicity is due to AgNPs themselves or Ag(+) ions leaching from their surfaces. In sea urchin Paracentrotus lividus, AgNPs cause dose dependent developmental defects such as(More)
Defects in Au-catalysed CdTe nanowires vapour-liquid-solid-grown on polycrystalline underlayers have been critically evaluated. Their low-temperature photoluminescence spectra were dominated by excitonic emission with rarely observed above-gap emission also being recorded. While acceptor bound exciton lines due to monovalent metallic impurities (Ag, Cu or(More)
A novel time-resolved cathodoluminescence method, where a pulsed electron beam is generated via the photoelectric effect, is used to probe individual CdTe grain boundaries. Excitons have a short lifetime (≤100 ps) within the grains and are rapidly quenched at the grain boundary. However, a ~47 meV shallow acceptor, believed to be due to oxygen, can act as a(More)
Determining the bonding environment at a rough interface, using for example the near-edge fine structure in electron energy loss spectroscopy (EELS), is problematic since the measurement contains information from the interface and surrounding matrix phase. Here we present a novel analytical method for determining the interfacial EELS difference spectrum(More)
A key characteristic of semiconductor nanowires (NWs) is that they grow on any substrate that can withstand the growth conditions, paving the way for their use in flexible electronics. We report on the direct growth of crystalline silicon nanowires on polyimide substrates. The Si NWs are grown by plasma-enhanced chemical vapor deposition, which allows the(More)
The optical characteristics of silicon nanowires grown on Si layers on glass have been modeled using the FDTD (Finite Difference Time Domain) technique and compared with experimental results. The wires were grown by the VLS (vapour-liquid-solid) method using Sn catalyst layers and exhibit a conical shape. The resulting measured and modeled absorption,(More)