Bu-Tong Li

  • Citations Per Year
Learn More
Based on fully optimized geometric structures at DFT-B3LYP/6-311G** level, we calculated electronic structures, heats of formation, strain energies, bond dissociation energies and detonation performance (detonation velocity and detonation pressure) for a series of polynitraminecubanes. Our results have shown that energy gaps of cubane derivatives are much(More)
A series of polynitroprismanes, C(6)H(6-n )(NO(2))(n) (n = 1-6) intended for use as high energy density compounds (HEDCs) were designed computationally. Their electronic structures, heats of formation, interactions between nitro groups, specific enthalpies of combustion, bond dissociation energies, and explosive performances (detonation velocities and(More)
As part of a search for high energy density materials (HEDMs), a series of purine derivatives with nitro groups were designed computationally. The relationship between the structures and the performances of these polynitropurines was studied. Density functional theory (DFT) at the B3LYP/6-311G** level was employed to evaluate the heats of formation (HOFs)(More)
Using the complete active space self-consistent field method with a large atomic natural orbital basis set, 10, 13, and 9 electronic states of the OClO radical, OClO(+) cation, and OClO(-) anion were calculated, respectively. Taking the further correlation effects into account, the second-order perturbation (CASPT2) calculations were carried out for the(More)
The singlet and triplet excited states of hydrogen cyanide have been computed by using the complete active space self-consistent field and completed active space second order perturbation methods with the atomic natural orbital (ANO-L) basis set. Through calculations of vertical excitation energies, we have probed the transitions from ground state to(More)
Using the completed active space second-order perturbation (CASPT2) method, valence and Rydberg excited states of CH(2) molecule are probed with the large atomic natural orbital (ANO-L) basis set. Five states are optimized and the geometric parameters are in good agreement with the available data in literatures, furthermore, the state of 2(1)B(1) is(More)
Based on DFT-B3LYP/6-311G** method, the molecular geometric structures of polynitramineprismanes are fully optimized. The detonation performances, energy gaps, strain energies, as well as their stability were investigated to look for high energy density compounds (HEDCs). Our results show that all polynitramineprismanes have high and positive heat of(More)
Using the complete active space self-consistent field (CASSCF) method with large atomic natural orbital (ANO-L) basis set, four electronic states of the HSO neutral radical are optimized. The vertical transitions of the HSO neutral radical are investigated by using the same method under the basis set of ANO-L functions augmented with a series of adapted(More)
The complex doublet potential surface of the NCO + HCNO reaction has been investigated at the QCISD(T)/6-311g(d,p)//UB3LYP/6-31G(d,p) level. We have found 29 isomers on the potential surface, which are connected by 38 transition states. The single-point energy calculations are performed at the high-level QCISD(T)/6-311G(d,p) for more accurate energy values.(More)
  • 1