Bryony Ariya Nayagam

Learn More
In mammals, the initial bridge between the physical world of sound and perception of that sound is established by neurons of the spiral ganglion. The cell bodies of these neurons give rise to peripheral processes that contact acoustic receptors in the organ of Corti, and the central processes collect together to form the auditory nerve that projects into(More)
Hearing loss is an increasing problem for a substantial number of people and, with an aging population, the incidence and severity of hearing loss will become more significant over time. There are very few therapies currently available to treat hearing loss, and so the development of new therapeutic strategies for hearing impaired individuals is of(More)
The cochlear implant provides auditory cues to profoundly deaf patients by electrically stimulating the residual spiral ganglion neurons. These neurons, however, undergo progressive degeneration after hearing loss, marked initially by peripheral fibre retraction and ultimately culminating in cell death. This research aims to use gene therapy techniques to(More)
The degeneration of hair cells in the mammalian cochlea results in permanent sensorineural hearing loss. This study aimed to promote the regeneration of sensory hair cells in the mature cochlea and their reconnection with auditory neurons through the introduction of ATOH1, a transcription factor known to be necessary for hair cell development, and the(More)
Neurotrophins provide an effective tool for the rescue and regeneration of spiral ganglion neurons (SGNs) following sensorineural hearing loss. However, these nerve growth factors are also potent modulators of ion channel activity and expression, and in the peripheral auditory system brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT3) have(More)
According to 2010 estimates from The National Institute on Deafness and other Communication Disorders, approximately 17% (36 million) American adults have reported some degree of hearing loss. Currently, the only clinical treatment available for those with severe-to-profound hearing loss is a cochlear implant, which is designed to electrically stimulate the(More)
Infrared stimulation offers an alternative to electrical stimulation of neuronal tissue, with potential for direct, non-contact activation at high spatial resolution. Conventional methods of infrared neural stimulation (INS) rely on transient heating due to the absorption of relatively intense laser beams by water in the tissue. However, the water(More)
Emerging therapies for sensorineural hearing loss include replacing damaged auditory neurons (ANs) using stem cells. Ultimately, it is important that these replacement cells can be patient-matched to avoid immunorejection. As human induced pluripotent stem cells (hiPSCs) can be obtained directly from the patient, they offer an opportunity to generate(More)
Gene therapy has been investigated as a way to introduce a variety of genes to treat neurological disorders. An important clinical consideration is its long-term effectiveness. This research aims to study the long-term expression and effectiveness of gene therapy in promoting spiral ganglion neuron survival after deafness. Adenoviral vectors modified to(More)
Optic neuropathies are characterised by a loss of retinal ganglion cells (RGCs) that lead to vision impairment. Development of cell therapy requires a better understanding of the signals that direct stem cells into RGCs. Human embryonic stem cells (hESCs) represent an unlimited cellular source for generation of human RGCs in vitro. In this study, we present(More)