Bryan W. Eichhorn

Learn More
Most of the world's hydrogen supply is currently obtained by reforming hydrocarbons. 'Reformate' hydrogen contains significant quantities of CO that poison current hydrogen fuel-cell devices. Catalysts are needed to remove CO from hydrogen through selective oxidation. Here, we report first-principles-guided synthesis of a nanoparticle catalyst comprising a(More)
Photoelectron spectroscopic measurements have the potential to provide detailed mechanistic insight by resolving chemical states, electrochemically active regions and local potentials or potential losses in operating solid oxide electrochemical cells (SOCs), such as fuel cells. However, high-vacuum requirements have limited X-ray photoelectron spectroscopy(More)
We report on the first-principles-guided design, synthesis, and characterization of core-shell nanoparticle (NP) catalysts made of a transition metal core (M = Ru, Rh, Ir, Pd, or Au) covered with a approximately 1-2 monolayer thick shell of Pt atoms (i.e., a M@Pt core-shell NP). An array of experimental techniques, including X-ray diffraction, Fourier(More)
Rh@Pt core-shell, RhPt (1:1) alloy, and Rh + Pt monometallic nanoparticles (NPs) were prepared using standard polyol reduction chemistry in ethylene glycol (EG) with standard inorganic salts and polyvinylpyrrolidine (PVP(55000)) stabilizers. PVP-free colloids were also prepared but less stable than the PVP-protected NPs. Rh@Pt core-shell particles were(More)
A combination of anion photoelectron spectroscopy and density functional theory calculations has elucidated the geometric and electronic structure of gas-phase endohedral Pt/Pb cage cluster anions. The anions, Pt@Pb₁₀⁻¹ and Pt@Pb₁₂¹⁻ were prepared from "preassembled" clusters generated from crystalline samples of [K(2,2,2-crypt)]₂[Pt@Pb₁₂] that were brought(More)
A comprehensive structural/architectural evaluation of the PtRu (1:1) alloy and Ru@Pt core-shell nanoparticles (NPs) provides spatially resolved structural information on sub-5 nm NPs. A combination of extended X-ray absorption fine structure (EXAFS), X-ray absorption near edge structure (XANES), pair distribution function (PDF) analyses, Debye function(More)
Au-Pt heteroaggregate nanostructures were prepared by sequential reduction methods. The structures have approximately 11 nm Au cores with Pt "tendrils" attached to the Au surface. The heteroaggregates are active H2 oxidation catalysts and show high activity at 90 degrees C in the presence of 1000 ppm CO. The surprising CO-tolerant behavior arises from the(More)