Learn More
The adenylate uridylate-rich elements (AREs) mediate the rapid turnover of mRNAs encoding proteins that regulate cellular growth and body response to exogenous agents such as microbes, inflammatory and environmental stimuli. However, the full repertoire of ARE-containing mRNAs is unknown. Here, we explore the distribution of AREs in human mRNA sequences.(More)
A comprehensive search that utilized a large set of mRNA data from human genome databases and additionally, expressed sequence tag (EST) database characterized this latest update of AU-rich elements (AREs) containing mRNA database (ARED). A large number of ARE-mRNA, as much as 4000, were recovered and include many of ARE alternative forms. This number(More)
Interferons (IFNs) are a family of multifunctional cytokines that activate transcription of subsets of genes. The gene products induced by IFNs are responsible for IFN antiviral, antiproliferative, and immunomodulatory properties. To obtain a more comprehensive list and a better understanding of the genes regulated by IFNs, we compiled data from many(More)
Although microRNAs (miRNAs) are key regulators of gene expression, little is known of their overall persistence in the cell following processing. Characterization of such persistence is key to the full appreciation of their regulatory roles. Accordingly, we measured miRNA decay rates in mouse embryonic fibroblasts following loss of Dicer1 enzymatic(More)
The Adenylate Uridylate (AU)-Rich Element Database, ARED-mRNA version 2.0, contains information not present in the previous ARED. This includes additional data entries, new information and links to Unigene, LocusLink, RefSeq records and mouse homologue data. An ARE consensus sequence specific to the 3'UTR is the basis of ARED that demonstrated two important(More)
IFNs were first described as potent antiviral agents 40 years ago, and recombinant IFN-a^ and IFN-a2h were approved for the treatment of hairy cell leukemia just 11 years ago. Today, a-IFNs are approved world wide for the treatment of a variety of malignancies and virologie diseases. Although the exact mechanism of action of IFN-a in the treatment of such(More)
Type I interferons (IFNs) are known to mediate viral control, and also promote survival and expansion of virus-specific CD8+ T cells. However, it is unclear whether signaling cascades involved in eliciting these diverse cellular effects are also distinct. One of the best-characterized anti-viral signaling mechanisms of Type I IFNs is mediated by the(More)
Human respiratory epithelium expresses inducible nitric oxide synthase (iNOS) continuously in vivo, however mechanisms responsible for maintenance of expression are not known. We show that IFN ␥ is sufficient for induction of iNOS in primary human airway epithelial cells (HAEC) in vitro, and IL-4 potentiates IFN ␥-induced iNOS expression in HAEC through(More)
Fine-tuning of inflammatory responses by microRNAs (miRNAs) is complex, as they can both enhance and repress expression of pro-inflammatory mediators. In this study, we investigate inflammatory responses following global miRNA depletion, to better define the overall contribution of miRNAs to inflammation. We demonstrate that miRNAs positively regulate(More)