Bryan R. G. Williams

Learn More
The adenylate uridylate-rich elements (AREs) mediate the rapid turnover of mRNAs encoding proteins that regulate cellular growth and body response to exogenous agents such as microbes, inflammatory and environmental stimuli. However, the full repertoire of ARE-containing mRNAs is unknown. Here, we explore the distribution of AREs in human mRNA sequences.(More)
Although microRNAs (miRNAs) are key regulators of gene expression, little is known of their overall persistence in the cell following processing. Characterization of such persistence is key to the full appreciation of their regulatory roles. Accordingly, we measured miRNA decay rates in mouse embryonic fibroblasts following loss of Dicer1 enzymatic(More)
A comprehensive search that utilized a large set of mRNA data from human genome databases and additionally, expressed sequence tag (EST) database characterized this latest update of AU-rich elements (AREs) containing mRNA database (ARED). A large number of ARE-mRNA, as much as 4000, were recovered and include many of ARE alternative forms. This number(More)
The Adenylate Uridylate (AU)-Rich Element Database, ARED-mRNA version 2.0, contains information not present in the previous ARED. This includes additional data entries, new information and links to Unigene, LocusLink, RefSeq records and mouse homologue data. An ARE consensus sequence specific to the 3'UTR is the basis of ARED that demonstrated two important(More)
Type I interferons (IFNs) are known to mediate viral control, and also promote survival and expansion of virus-specific CD8+ T cells. However, it is unclear whether signaling cascades involved in eliciting these diverse cellular effects are also distinct. One of the best-characterized anti-viral signaling mechanisms of Type I IFNs is mediated by the(More)
Fine-tuning of inflammatory responses by microRNAs (miRNAs) is complex, as they can both enhance and repress expression of pro-inflammatory mediators. In this study, we investigate inflammatory responses following global miRNA depletion, to better define the overall contribution of miRNAs to inflammation. We demonstrate that miRNAs positively regulate(More)
  • Henry S. Kim, Matthew C. J. Wilce, Yano M. K. Yoga, Nicole R. Pendini, Menachem J. Gunzburg, Nathan P. Cowieson +4 others
  • 2011
TIAR and HuR are mRNA-binding proteins that play important roles in the regulation of translation. They both possess three RNA recognition motifs (RRMs) and bind to AU-rich elements (AREs), with seemingly overlapping specificity. Here we show using SPR that TIAR and HuR bind to both U-rich and AU-rich RNA in the nanomolar range, with higher overall affinity(More)
The double-stranded RNA-activated protein kinase R (PKR) is a key regulator of the innate immune response. Activation of PKR during viral infection culminates in phosphorylation of the alpha subunit of the eukaryotic translation initiation factor 2 (eIF2alpha) to inhibit protein translation. A broad range of regulatory functions has also been attributed to(More)
The retinoic acid inducible gene-I (RIG-I)-like family of receptors is positioned at the front line of our innate cellular defence system. RIG-I detects and binds to foreign duplex RNA in the cytoplasm of both immune and non-immune cells, and initiates the induction of type I interferons and pro-inflammatory cytokines. The mechanism of RIG-I activation by(More)
Acute inflammation, an integral part of host defence and immunity, is a highly conserved cellular response to pathogens and other harmful stimuli. An inflammatory stimulation triggers transcriptional activation of selective pro-inflammatory genes that carry out specific functions such as anti-microbial activity or tissue healing. Based on the nature of(More)
  • 1