Bryan R Fonslow

Learn More
A multiple-depth micro free-flow electrophoresis chip (mu-FFE) has been fabricated with a 20-microm-deep separation channel and 78-microm-deep electrode channels. Due to the difference in channel heights, the linear velocity of buffer in the electrode channels is approximately 15 times that of the buffer in the separation channel. Previous mu-FFE devices(More)
Gradient micro free flow electrophoresis (muFFE) was used to observe the equilibria of DNA aptamers with their targets (IgE or HIVRT) across a range of ligand concentrations. A continuous stream of aptamer was mixed online with an increasing concentration of target and introduced into the muFFE device, which separated ligand-aptamer complexes from the(More)
A micro-free-flow electrophoresis chip has been fabricated into a glass wafer etched with 20-microm-deep channels. Wafers were bonded anodically using an intermediate amorphous silicon film. Electric fields as high as 283 V/cm were applied across the separation channel to obtain baseline resolution of fluorescent standards in 4.8 s. The effect of electric(More)
The broadening mechanisms for micro-free flow electrophoresis (micro-FFE) have been investigated using a van Deemter analysis. Separation power, the product of electric field and residence time, is presented as a parameter for predicting the position of sample streams and for comparing separations under different conditions. Band broadening in micro-FFE is(More)
The continuous nature of micro free-flow electrophoresis (mu-FFE) was used to monitor the effect of a gradient of buffer conditions on the separation. This unique application has great potential for fast optimization of separation conditions and estimation of equilibrium constants. COMSOL was used to model pressure profiles in the development of a new(More)
Fast, continuous separation of mitochondria from rat myoblasts using micro free-flow electrophoresis (muFFE) with online laser-induced fluorescence detection (LIF) is reported. Mitochondrial electrophoretic profiles were acquired in less than 30 s. In comparison to macroscale FFE instruments, muFFE devices consumed approximately 100-fold less sample, used(More)
  • 1