Bryan P. Toole

Learn More
  • B P Toole
  • Seminars in cell & developmental biology
  • 1997
Hyaluronan is a very large polysaccharide that is found in extracellular matrices, at the cell surface and inside cells. This review focuses on the functions of hyaluronan directly associated with the cell surface, where it is commonly present as the essential core of a highly hydrated pericellular matrix that contains several other components(More)
Many of the tumor-associated matrix metalloproteinases that are implicated in metastasis are produced by stromal fibroblasts within or surrounding the tumor in response to stimulation by factors produced by tumor cells. In this study we transfected Chinese hamster ovary cells with putative cDNA for human extracellular matrix metalloproteinase inducer(More)
Cyclophilin A (CyPA), a ubiquitously distributed intracellular protein, is a peptidylprolyl cis-trans-isomerase and the major target of the potent immunosuppressive drug cyclosporin A. Although expressed predominantly as an intracellular molecule, CyPA is secreted by cells in response to inflammatory stimuli and is a potent neutrophil and eosinophil(More)
Multidrug resistance is a potent barrier to effective, long term therapy in cancer patients. It is frequently attributed to enhanced expression of multidrug transporters or to the action of receptor kinases, such as ErbB2, and downstream anti-apoptotic signaling pathways, such as the phosphoinositide 3-kinase/Akt pathway. However, very few connections have(More)
To understand how the hyaluronan receptor CD44 regulates tumor metastasis, the murine mammary carcinoma TA3/St, which constitutively expresses cell surface CD44, was transfected with cDNAs encoding soluble isoforms of CD44 and the transfectants (TA3sCD44) were compared with parental cells (transfected with expression vector only) for growth in vivo and in(More)
Hyaluronate is a major component of the intercellular matrix surrounding proliferating and migrating cells in embryonic tissues. When placed in culture, mesodermal cells from the early, proliferative stages of limb development produce high levels of hyaluronate and exhibit prominent hyaluronate-dependent pericellular coats. Cells from the subsequent stages(More)