Bryan P Irish

Learn More
PROBLEM STATEMENT: Infection with retroviruses such as human immunodeficiency virus type 1 (HIV-1) and human T cell leukemia virus type 1 (HTLV-1) have been shown to lead to neurodegenerative diseases such as HIV-associated dementia (HAD) or neuroAIDS and HTLV-1-Associated Myelopathy/Tropical Spastic Paraparesis (HAM/TSP), respectively. APPROACH:(More)
Numerous host and viral factors likely participate in the onset and progression of HIV-1-associated dementia (HIVD). Previous studies have suggested that viral gene expression in resident central nervous system (CNS) cells of monocyte/macrophage lineage play a central role in the production of neurotoxic viral proteins and infectious virus, deregulation of(More)
Cells of the monocyte-macrophage lineage play an important role in human immunodeficiency virus type 1 (HIV-1)-associated disease. Infected myeloid precursor cells of the bone marrow are thought to be a viral reservoir that may repopulate the peripheral blood, central nervous system (CNS), and other organ systems throughout the course of disease. To model(More)
Basal and activated human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) activity, and in return, viral replication is partly dependent on interactions of the G/C box array with the Sp family of transcription factors. Analysis of LTR Sp binding site sequence variants revealed a C-to-T change at position 5 within Sp site III that increased(More)
Human immunodeficiency virus type 1 (HIV-1) subtype C, which is most predominant in sub-Saharan Africa as well as in Asia and India, is the most prevalent subtype worldwide. A large number of transcription factor families have been shown to be involved in regulating HIV-1 gene expression in T lymphocytes and cells of the monocyte-macrophage lineage. Among(More)
CCAAT/enhancer-binding protein (C/EBP) basic region/leucine zipper (bZIP) transcription factors have been shown to form heterodimers with cAMP-responsive element binding protein 2 (CREB-2), a transcription factor involved in regulating basal and Tax-mediated transactivation of the human T cell leukemia virus type 1 (HTLV-1) long terminal repeat (LTR). In(More)
Human T cell leukemia virus type 1 (HTLV-1) has previously been shown to infect antigen-presenting cells and their precursors in vivo. However, the role these important cell populations play in the pathogenesis of HTLV-1-associated myelopathy/tropical spastic paraparesis or adult T cell leukemia remains unresolved. To better understand how HTLV-1 infection(More)
HIV-associated neurologic disease continues to be a significant complication in the era of highly active antiretroviral therapy. A substantial subset of the HIV-infected population shows impaired neuropsychological performance as a result of HIV-mediated neuroinflammation and eventual central nervous system (CNS) injury. CNS compartmentalization of HIV,(More)
To date, no prognostic viral markers exist for the onset of human immunodeficiency virus type 1 (HIV-1)-associated dementia (HIVD). The long terminal repeat (LTR) regulates HIV-1 viral gene expression via its interaction with multiple viral and host factors, including CCAAT/ enhancer binding protein (C/EBP) and Sp transcription factor families. We have(More)
Viral replication, in part, is mediated by interactions between the HIV-1 long terminal repeat (LTR) and a variety of host cell and viral proteins. Basal and activated LTR activity is dependent on interactions between the G/C box array of the HIV-1 LTR and the Sp family of transcription factors. The effect of monocytic differentiation on Sp factor binding(More)
  • 1