Learn More
We have developed and tested two electroencephalogram (EEG)-based brain-computer interfaces (BCI) for users to control a cursor on a computer display. Our system uses an adaptive algorithm, based on kernel partial least squares classification (KPLS), to associate patterns in multichannel EEG frequency spectra with cursor controls. Our first BCI, Target(More)
A new method for classification is proposed. This is based on kernel orthonormalized partial least squares (PLS) dimensionality reduction of the original data space followed by a support vector classifier. Unlike principal component analysis (PCA), which has previously served as a dimension reduction step for discrimination problems, orthonor-malized PLS is(More)
We are developing electromyographic and electroencephalographic methods, which draw control signals for human-computer interfaces from the human nervous system. We have made progress in four areas: 1) real-time pattern recognition algorithms for decoding sequences of forearm muscle activity associated with control gestures; 2) signal-processing strategies(More)
We measured multichannel EEG spectra during a continuous mental arithmetic task and created statistical learning models of cognitive fatigue for single subjects. Sixteen subjects (4 F, 18-38 y) viewed 4-digit problems on a computer, solved the problems, and pressed keys to respond (inter-trial interval = 1 s). Subjects performed until either they felt(More)
Two new computational models show that the EEG distinguishes three distinct mental states ranging from alert to fatigue. State 1 indicates heightened alertness and is frequently present during the first few minutes of time on task. State 2 indicates normal alertness, often following and lasting longer than State 1. State 3 indicates fatigue, usually(More)
We measured multichannel EEG spectra during a continuous mental arithmetic task and created statistical learning models of cognitive fatigue for single subjects. Sixteen subjects (4 F, 18-38 y) viewed 4-digit problems on a computer, solved the problems, and pressed keys to respond (inter-trial interval = 1 s). Subjects performed until either they felt(More)
As new technologies are developed to handle the complexities of the Next Generation Air Transportation System (NextGen), it is increasingly important to address both current and future safety concerns along with the operational, environmental, and efficiency issues within the National Airspace System (NAS). In recent years, the Federal Aviation(More)