Learn More
OBJECTIVE A prospective double-blind randomized control trial (RCT) to evaluate the benefit of a combinatorial, five gene pharmacogenomic test and interpretive report (GeneSight) for the management of psychotropic medications used in the treatment of major depression in an outpatient psychiatric practice. METHODS Depressed adult outpatients were(More)
OBJECTIVE Genes likely play a substantial role in the etiology of attention-deficit/hyperactivity disorder (ADHD). However, the genetic architecture of the disorder is unknown, and prior genome-wide association studies (GWAS) have not identified a genome-wide significant association. We have conducted a third, independent, multisite GWAS of DSM-IV-TR ADHD.(More)
BACKGROUND Schizophrenia is a complex psychiatric disorder with a strong genetic component. Past linkage studies have implicated several chromosomal regions in the etiology of schizophrenia. Within these regions, several genes have been identified via candidate gene association studies as strong schizophrenia susceptibility loci, including DAO, DAOA, DISC1,(More)
In four previous studies, a combinatorial multigene pharmacogenomic test (GeneSight) predicted those patients whose antidepressant treatment for major depressive disorder resulted in poorer efficacy and increased health-care resource utilizations. Here, we extended the analysis of clinical validity to the combined data from these studies. We also compared(More)
OBJECTIVES The objective of this project was to determine pharmacy cost savings and improvement in adherence based on a combinatorial pharmacogenomic test (CPGx ) in patients who had switched or added a new psychiatric medication after having failed monotherapy for their psychiatric disorder. RESEARCH DESIGN AND METHODS The prospective project compared 1(More)
DNA of 258 patients with treatment-resistant depression was collected in three 8-10 week, two-arm, prospective clinical trials. Forty-four allelic variations were measured in genes for the cytochrome P450 (CYP) enzymes CYP2D6, CYPC19, and CYP1A2, the serotonin transporter (SLC6A4), and the 5-HT2A receptor (HTR2A). The combinatorial pharmacogenomic (CPGx™)(More)
Recent GWAS studies focused on uncovering novel genetic loci related to AD have revealed associations with variants near CLU, CR1, PICALM and BIN1. In this study, we conducted a genome-wide association study in an independent set of 1034 cases and 1186 controls using the Illumina genotyping platforms. By coupling our data with available GWAS datasets from(More)
The cholesteryl ester transfer protein gene (CETP) has been the subject of hundreds of genetic analyses that typically focus on a small number of polymorphisms within a single ethnic group. Furthermore, the extent of DNA beyond the transcribed sequence from which single nucleotide polymorphisms (SNPs) may influence CETP expression has not been well defined.(More)
The deposition of amyloid beta peptide (Abeta) in the form of plaques in the brain is a hallmark of Alzheimer's disease (AD). Neprilysin is the major Abeta-degradating enzyme and reduction in neprilysin activity could contribute to Alzheimer's by increasing the steady-state level of Abeta. To provide further evidence for the role of neprilysin in AD we(More)
Pharmacogenomic testing in mental health has not yet reached its full potential. An important reason for this involves differentiating individual gene testing (IGT) from a combinatorial pharmacogenomic (CPGx) approach. With IGT, any given gene reveals specific information that may, in turn, pertain to a smaller number of medications. CPGx approaches attempt(More)