Bryan H Kim

We don’t have enough information about this author to calculate their statistics. If you think this is an error let us know.
Learn More
Radiation therapy techniques that incorporate multiple couch motions are becoming more common, and they often involve an increasing level of complexity along with a need for automatic motion. The reproducibility of automatic couch motion is thus a growing concern. In this work we carried out various tests to assess the automatic motion of a commercial(More)
The dynamic evolution of the baryonic intergalactic medium (IGM) caused by the underlying dark matter gravity is governed by the Navier-Stokes equations in which many cooling and heating processes are involved. However, it has long been recognized that the growth mode dynamics of cosmic matter clustering can be sketched by a random force driven Burgers’(More)
An Fe/ZSM-5 catalyst with a very high Si/Al ratio was prepared, and using it, the effect of NO upon the kinetics of N2O decomposition was studied. The addition of small, nonstoichiometric amounts of NO was observed to cause the rate to increase by more than an order of magnitude. The kinetics were well-fit by a rate expression that was first order in the(More)
The dynamic evolution of the baryonic intergalactic medium (IGM) caused by the underlying dark matter gravity is governed by the Navier-Stokes equations in which many cooling and heating processes are involved. However, it has long been recognized that the growth mode dynamics of cosmic matter clustering can be sketched by a random force driven Burgers’(More)
Loose helical delivery is a potential solution to account for respiration-driven tumour motion in helical tomotherapy (HT). In this approach, a treatment is divided into a set of interlaced 'loose' helices commencing at different gantry angles. Each loose helix covers the entire target length in one gantry rotation during a single breath-hold. The(More)
Tumor motion is a particular concern for a complex treatment modality such as helical tomotherapy, where couch position, gantry rotation and MLC leaf opening all change with time. In the present study, we have investigated the impact of tumor motion for helical tomotherapy, which could result in three distinct motion-induced dose artifacts, namely (1) dose(More)
Gated radiotherapy of lung lesions is particularly complex for helical tomotherapy, due to the simultaneous motions of its three subsystems (gantry, couch and collimator). We propose a new way to implement gating for helical tomotherapy, namely multi-pass respiratory gating. In this method, gating is achieved by delivering only the beam projections that(More)
  • 1