Learn More
OBJECTIVES To investigate the effect of hyperbaric oxygen (HBO2) on acetaminophen (APAP)-induced hepatotoxicity. The authors further evaluated the effects of APAP poisoning and HBO2 on the expression and function of hypoxia-inducible factor 1-alpha (HIF-1alpha) in an effort to further describe the mechanisms of APAP-induced hepatotoxicity. In vitro assays(More)
OBJECTIVE This study was performed to determine whether hyperbaric oxygen (HBO2) therapy is protective in cecal ligation and puncture (CLP)-induced sepsis and if protection is dependent on oxygen dosing. We also wished to determine whether HBO2 affected bacterial clearance or altered macrophage production of interleukin-10 (IL-10)s in the setting of CLP(More)
Sepsis, the systemic inflammatory response to infection, is a leading cause of morbidity and mortality. The mechanisms of sepsis pathophysiology remain obscure but are likely to involve a complex interplay between mediators of the inflammatory and coagulation pathways. An improved understanding of these mechanisms should provide an important foundation for(More)
Antitumor T cells either avoid or are inhibited in hypoxic and extracellular adenosine-rich tumor microenvironments (TMEs) by A2A adenosine receptors. This may limit further advances in cancer immunotherapy. There is a need for readily available and safe treatments that weaken the hypoxia-A2-adenosinergic immunosuppression in the TME. Recently, we reported(More)
Antimicrobial treatment strategies must improve to reduce the high mortality rates in septic patients. In noninfectious models of acute inflammation, activation of A2B adenosine receptors (A2BR) in extracellular adenosine-rich microenvironments causes immunosuppression. We examined A2BR in antibacterial responses in the cecal ligation and puncture (CLP)(More)
Hypoxia-driven, A2A adenosine receptor (A2AR)-mediated (hypoxia-A2-adenosinergic), T-cell-autonomous immunosuppression was first recognized as critical and nonredundant in protecting normal tissues from inflammatory damage and autoimmunity. However, this immunosuppressive mechanism can be highjacked by bacteria and tumors to provide misguided protection for(More)
Strategies are needed to reverse the immune cell hyporesponsiveness and prevent bacterial overgrowth associated with high mortality rates in septic patients. Adenosine signaling may be mediating immunosuppressive signals within the inflammatory microenvironment that are safeguarding bacteria by rendering immune cells hyporesponsive. We examined A2A(More)
Asthma is a chronic condition with high morbidity and healthcare costs, and cockroach allergens are an established cause of urban pediatric asthma. A better understanding of cell types involved in promoting lung inflammation could provide new targets for the treatment of chronic pulmonary disease. Because of its role in regulating myeloid cell-dependent(More)
Intratumoral hypoxia and hypoxia inducible factor-1α (HIF-1-α)-dependent CD39/CD73 ectoenzymes may govern the accumulation of tumor-protecting extracellular adenosine and signaling through A2A adenosine receptors (A2AR) in tumor microenvironments (TME). Here, we explored the conceptually novel motivation to use supplemental oxygen as a treatment to inhibit(More)
Hypoxia-adenosinergic suppression and redirection of the immune response has been implicated in the regulation of antipathogen and antitumor immunity, with hypoxia-inducible factor 1α (HIF-1α) playing a major role. In this study, we investigated the role of isoform I.1, a quantitatively minor alternative isoform of HIF-1α, in antibacterial immunity and(More)